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Abstract

We do two things in this paper. First, we put forward some elements of a micro-
economic theory of technological evolution. This involves adding nascent (essentially
undiscovered) technologies to the existing technologies of neoclassical production theory,
and, more importantly, expanding the notion of the production plan to include the recipe
} the complete description of the underlying engineering process. Second, we use the
recipes approach in constructing a simple microeconomic model of shop-#oor learning
by doing. We simulate the dynamics of the model and report the e!ects of changes in the
basic parameters on the resulting engineering experience curves. For correctly chosen
values of these parameters, the predictions of the model match the observed experience
curves. ( 2000 Elsevier Science B.V. All rights reserved.
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1See the books by Grossman and Helpman (1991), Ray (1998), Jones (1998), and Aghion and
Howitt (1998). See also Solow's (1994) critical survey.

1. Introduction

According to neoclassical theory, a production plan is merely a point in
input}output space. The neoclassical theory has been extended to accommodate
intertemporal features such as the variability over time of factor supplies,
uncertainty about the production process, and uncertainty about prices. The
neoclassical theory of production is not, however, fully dynamic since it does not
provide a microeconomic basis for explaining technological evolution due to (for
example) learning by doing, education and training, research and development,
or technology transfer.

In this regard, macroeconomics is ahead of its microeconomic foundations. In
his celebrated article on learning by doing, Arrow (1962) accounts for the
observed fact that unit production costs can fall even in the absence of capital
accumulation and R&D e!ort. Arrow attributes the increased productivity to
learning by doing on the shop #oor by production workers and managers.
Arrow models learning by doing as a positive macroeconomic production ex-
ternality: increases in &manufacturing experience' } as measured (for example) by
cumulative gross investment } lead to increased productivity. Several other
macro models of technological progress are based on some production ex-
ternality. See, for example, Shell (1967), Clemhout and Wan (1970), Stokey
(1988), Romer (1990), and Lucas (1993).

Another class of (not unrelated) macro models of technological evolution is
based on non-conventional factors of production. Uzawa (1965) introduced in
a simple growth model human capital, the stock of which can be increased by
devoting resources to education. In the hands of Lucas (1988), Caballe and
Santos (1993) and others, this human-capital model (with clearly modelled
externalities) has become a staple for analyzing productivity growth. Shell (1966,
1967, 1973) and Romer (1986, 1990) introduced into growth theory the macro
variable technological knowledge. The Shell}Romer theory combines technolo-
gical knowledge (or the stock of patents) with production externalities and
increasing returns to scale to analyze the role of industrial organization in
growth, the dependence of growth on initial conditions, and other important
macro problems.1

Macroeconomic models based on production externalities and/or noncon-
ventional inputs have been useful in raising important issues about public policy
toward technology and in explaining observed increases in aggregate output,
but the inadequacy of the microeconomic foundations of these models is
a serious problem for the theory of production. In the present paper, we
put forward some key elements of a microeconomic theory of technological
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2Forgotten technologies do not play a role in our application to learning by doing.

3This "ts with the theory of the "rm in Coase (1937).

4These intra"rm externalities should not be confused with inter"rm external e!ects, which have
been used in macroeconomic models to account for technological evolution.

evolution. To the existing (or currently available) technologies of neoclassical
production theory, we add nascent technologies, which include both undis-
covered technologies and forgotten technologies.2

The reader might be skeptical about any modeling of undiscovered technolo-
gies. While existing technologies can be veri"ed by current engineering practice,
undiscovered technologies cannot. On the other hand, practicing production
engineers and business managers are not reluctant to base important business
decisions on forecasts of technological progress in the "rm's manufacturing oper-
ations. In fact, one of the most reliable analytic tools in production management is
the engineering experience curve (or learning curve), which projects existing unit
production costs for a given product into its future unit production costs. Among
production engineers, marketing managers, business executives, and even corpo-
rate directors, empirical learning curves are far better known and more frequently
used than are empirical production functions or empirical cost functions.

The most important new idea in the present paper is in our description of the
production plan. To the usual input}output speci"cation, we add a description of
the underlying engineering recipe employed. Describing how one recipe is related
to another then should allow one to build models that suggest which types of
technologies are likely to be uncovered in the course of ordinary shop #oor
operations (learning by doing), which R&D programs are most likely to be
successful, which types of technologies are ripe for transfer from one "rm (or
economy) to another, and so forth. Inspiration for our production recipes ap-
proach can be found in Nelson and Phelps (1966) and Nelson and Winter (1982).
Inspiration for the nascent technology approach can be found in the separate and
distinct works of Shell (1973) and Kau!man (1988).

We assume that a production recipe is described by a vector of basic produc-
tion operations such as heating, mixing, stirring, shaping, boxing, internal factory
transportation, and so forth. For given outputs, the input requirements for each
of the operations depends on the instruction (or setting) given for that operation
and the instructions given for some of the other operations. Hence we allow for
production externalities within the "rm.3 These intraxrm production externali-
ties4 are crucial to our analysis.

As a speci"c application of our (more general) production recipes approach
(along with our nascent technology approach), we construct a simple model of
shop-#oor learning by doing. The modeled interrelationships among the recipes
(and hence the technologies) are relatively sophisticated. Other aspects of the
model are relatively simple. We assume that the "rm employs a single input to
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5See Kau!man and Levin (1987) and Kau!man (1993).

6See Debreu (1959), Chapter 3, Arrow and Hahn (1971), Chapter 3, and the references to the
literature therein.

produce a single output and that, for a given "xed recipe, this process entails con-
stant returns to scale. We also assume that the "rm's output stream is predeter-
mined. We allow for deviations from the currently reigning technology, but we
assume that such production trials (or errors) are not directly controlled by the
"rm. We assume that a newly discovered recipe is either accepted or rejected merely
on the basis of current cost e$ciency relative to that of the reigning technology.

These strong assumptions allow us to employ a variant of Kau!man's NK
model5 to analyze the dynamics of manufacturing costs. The NK model was
originally designed for analyzing asexual biological evolution. In the evolution-
ary biology interpretation, it is assumed that the &"tness' of a creature can be
represented by a scalar. The corresponding assumptions for learning by doing
are the single output, the single input, and constant returns to scale, which
together allow the scalar &"tness' to be replaced by the scalar &current technolo-
gical e$ciency' (the inverse of current unit production cost). In the "rst inter-
pretation, it is assumed that genetic changes occur at random and that "tter
creatures immediately replace less "t ones. In the present interpretation, the
corresponding assumptions are that shop-#oor trials take place at random and
that the reigning recipe is replaced by the new recipe if and only if the new recipe
is more e$cient in the short run, i.e. recipe selection is myopic.

In Section 2, we introduce nascent technologies and production recipes. In
Section 3, we use the recipes model to construct a model of learning by doing. In
Section 4, we review the existing empirical literature on engineering experience
curves. In Section 5, we do the comparative dynamics for the model of learning
by doing, and relate the predictions of this model to the observations. By
correctly choosing the basic parameters of the model, we are able to match the
basic statistics and important qualitative phenomena from observed experience
curves } including the mean progress ratios (an inverse measure of the slope of
the experience curve) and their standard deviations, plateauing (runs without
improvements), curvature bias, and sensitivity to the length of the production
run. In Section 6, we provide a summary and our conclusions.

2. Technology

2.1. Neoclassical production theory

The neoclassical economic theory of production6 is a reduced-form model of
existing technological possibilities. Each "rm is endowed with a technology set
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Fig. 1. Neoclassical technology.

} a set of technologically feasible input}output combinations. These technology
sets are assumed to be "xed parameters of the neoclassical economy.

A simple example with one input and one output is described in Fig. 1.
A neoclassical production plan is a point (x, y) where x50 is the quantity of the
input and where y50 is the quantity of the output. The (shaded) set ¹ is the set
of all feasible neoclassical production plans. The northwest boundary of ¹ is the
production possibility frontier (or PPF). Points on the PPF represent the
&e$cient' production plans according to neoclassical theory, since no other plan
can be found that gives either more output for the same input or less input for
the same output. In this example, the PPF is linear, i.e. production exhibits
constant returns to scale. The production function is

y"hx,

where the positive scalar h is the slope of the PPF.
Look at Fig. 1 from the viewpoint of neoclassical production theory. Produc-

tion plan A is &e$cient'. Production plan B is &ine$cient'. In fact, A strictly
&dominates'B: pair A yields more output with less input than pair B. A and B are
nearby (or similar) production plans. C is distant from A and B.
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7Production engineers often use a precise (but di!erent for each output class) unit of measurement
called the &batch'.

Now look at Fig. 1 from the engineering point of view. Suppose that the
engineers tell us that there are only two known processes (Recipes 1 and 2) for
producing this output. Recipe 1 supports all pairs (x, y)50 that satisfy y4hx,
where h is a positive scalar. Recipe 2 supports all pairs (x, y)50 that satisfy
y4h@x, where h@(h is a positive scalar. The production pairs A and C lie on
the ray y"hx, while pair B lies on the ray y"h@x (indicated in Fig. 1 by the
dashed line). Suppose Recipe 1 is from an engineering viewpoint very di!erent
from Recipe 2, even though pair A is close to pair B.

Would it ever be rational to produce at B? The answer is yes. Suppose that
Recipe 2 is relatively untried. Using Recipe 2 might lead to the discovery of
recipes close to 2, but with lower production costs than Recipe 1 (and Recipe 2).
A rational case could be made in some circumstances for using only Recipe
2 and in other circumstances for using both Recipe 1 and Recipe 2 simulta-
neously.

According to neoclassical theory, production pairs A and B are close (or
similar), while the production pairs A and C are far apart (or dissimilar). But as
measured by their recipes, A and B are by assumption far apart (or dissimilar) if
Recipe 2 is used for B, while plans A and C must be based on precisely the same
recipe, Recipe 1. Furthermore, neoclassical theory does not accurately represent
the opportunities facing the production manager. He must jointly choose the
recipe and the production plan. Having chosen Recipe 1, only a production pair
from the PPF should be chosen. Having chosen Recipe 2, only production pairs
from the dashed ray in Fig. 1 should be chosen. All other pairs in ¹ (i.e. those not
satisfying y"hx or y"h@x) result from waste of some output or some input
when using one or both of the two basic engineering processes.

The example above is of single-input, single-output production with constant
returns to scale. The case for adopting the recipes approach is even stronger in
the presence of multiple inputs, multiple outputs, and/or nonconstant returns to
scale. We elaborate on this in Section 6.

2.2. Recipes and technologies: A simple, familiar example

A production recipe u is a complete list of engineering instructions for
producing given outputs from given inputs. In what follows, we assume that the
"rm uses a single input to produce a single output. We also assume that, given
the recipe choice, there is no waste in production. We assume that in production
run t, the "rm produces y

t
50 units7 of output by employing g

t
50 units of

input (hereafter &labor') based on the recipe u
t
. We assume in this subsection that

there is no uncertainty about the production process. Let l
t
"g

t
/y

t
be unit labor
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8See e.g. Shell (1973) and Grossman and Helpman (1991).

9 In the absence of non-crossing, there might not be a most advanced (or a most backward) recipe.

cost. Then we have l
t
"l(y

t
;u

t
), where, for "xed u

t
, l is the average cost

function. If l
t
"rst falls and then rises as y

t
is increased, then the average cost

curve is U-shaped. If l
t
is independent of y

t
, then we have constant returns to

scale.
Our approach to representing technologies is a generalization of the ap-

proach taken in several models of technological innovation (and/or imitation) in
which there are two types of technologies, advanced and backward (and two
types of "rms, also advanced and backward).8 Advanced "rms have access to
both the advanced and backward technologies, but backward "rms are re-
stricted to the backward technology. Let u

!
be the advanced recipe and u

"
be

the backward recipe. In this literature, the strong non-crossing9 assumption is
made, so we have

0(l(y;u
!
)(l(y;u

"
)(#R for each y'0.

For the advanced "rm, the set of recipes X
!
is given by

X
!
"Mu

!
, u

"
N.

For the backward "rm, the set of recipes, X
"
, is given by

X
"
"Mu

"
N.

In what follows, we generalize the very simple model of this subsection to
allow the "rm to choose not merely from (at most) two recipes, but instead from
a (large) general set of recipes, X. We restrict the formal model in what follows to
constant returns to scale, so that the unit labor requirement depends only on the
recipe employed. Typically, the labor requirement for a given recipe is not
known with certainty. Instead there is associated with each recipe u a probabil-
ity measure over the set of labor requirements. We will also assume } but this is
not critical } that there is a (relatively small) subset of recipes, the currently
available recipes X

t
LX and that the respective labor requirements for each of

these recipes is known with certainty.

2.3. Engineering operations

Production is assumed to involve n distinct engineering operations. The recipe
u can then be represented by

u"(u1,2,ui,2,un),

where ui represents the instructions for operation i for i"1,2, n. We assume
that for each operation the set of possible instructions is discrete. These choices
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10See Durrett (1991), especially Chapter 2. The relationship between random "eld models and
models based on realizations of random "elds (i.e. landscape models) is discussed in Stadler and
Happel (1995). For previous applications of random "elds and landscape models to economics, see
e.g. FoK llmer (1974), Kau!man (1988), and Durlauf (1993).

may be qualitative (e.g., whether to use a conveyor belt or a fork-lift truck for
internal transport) or they may be quantitative (e.g., the setting of the temper-
ature knob). In the latter case, the variable being adjusted is approximated by
discrete settings (think of the knob clicking from one setting to another). In
particular, we assume that ui satis"es

ui3M1,2, sN

for i"1,2, n, where s is a positive integer. Hence the number of recipes is "nite
and given by

dX"sn.

The "niteness of the set X has serious consequences. A model based on a "nite
space of recipes does not permit long-run productivity growth. The model with
a "nite set of recipes is, however, quite appropriate for modeling the intermediate
term productivity improvements observed in the manufacture of speci"c goods
(such as a particular model of the Pentium II processor) over their relatively short
product lives (measured in months, years or } at the very most } decades).

We assume that the unit labor cost of operation i, /i(u), is a random variable
whose distribution function is de"ned on R

`
. Consider two distinct recipes,

u and u@. The random variables /i(u) and /i(u@) are not necessarily indepen-
dent. In fact, /i depends on the instructions, ui, for operation i and possibly on
(some of) the instructions for the other operations, u~i. (With minor abuse of
notation, one could then have denoted the unit labor costs of operation i by
/i (ui; u~i), or more simply, /i(u).) We assume that the labor requirements are
additive; hence we have

/(u)"
n
+
i/1

/i(u),

where /(u) is the unit cost of production employing recipe u. For u "xed, /(u)
is a random variable. If u is allowed to vary over X, then /(u) is a random xeld.
A random "eld is a slight generalization of a stochastic process to allow the
argument (in this case u) to be a vector (as opposed to being a scalar such as
&time'). For the special case in which n"1, /(u) is then an ordinary stochastic
process. We denote by li(u) the realization of the random variable /i(u). The
realization of the random variable /(u) is l(u)"+n

i/1
li(u). If u varies over X,

the family of realizations l(u) is called the landscape (of the random "eld /(u)).
A landscape is thus a generalization to the case with n'1 of a &history' (of
a stochastic process).10
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2.4. Technological distance and the input requirement xeld

We saw in Section 2.1 how the neoclassical notion of technological distance
can be misleading. We need a measure of distance that captures the similarity or
dissimilarities of the inherent production processes rather than the relative
e$ciencies of production pairs or their relative scales. &Distance' between recipes
will, of course, depend on the application. If we take a shop-#oor perspective
} as we will do in our learning-by-doing application } then u is near u@ if these
recipes are the same except for, say, one temperature setting. If moving from u to
u@ represents the substitution of #uorine for chlorine where #uorine was not
formerly in use, then we would probably think of u and u@ as very far apart in
the shop-#oor metric. But for an R&D problem, the appropriate metric might
be altogether di!erent. In the chemistry research lab, for example, the distance
would in this case be small, since every chemist is aware that the elements
chlorine and #uorine are likely to react similarly because they are from the same
column of the Periodic Table of the Elements.

We assume that the set X can be described so that distances are meaningful
from the appropriate technological perspective. Our formal de"nition follows.

Dexnition (Distance). The distance d(u,u@) between the recipes u and u@ is the
minimum number of operations that must be changed in order to convert u to
u@. Since changing operations is symmetric, we have d(u,u@)"d(u@, u).

Example. Assume that u and u@ di!er only in the ith component. Then
d(u,u@)"1 when we have ui"1 and (ui)@"2 or when we have ui"1 and
(ui)@"37.

This de"nition of distance makes the most sense when the instructions are
merely qualitative. If instead the instructions can be represented by ordinal
settings (such as temperature), then the distance notion should be di!erent. If the
instructions for operation i in the above example had been temperature settings,
then the recipe with its ith entry equal to 2 would be closer to u than the recipe
with its ith entry equal to 37. In particular, 23C is closer to 13C than is 373C. If
settings are ordered, then a wise strategy for the "rm, might be (if possible) to
change the setting in the same direction that led to the most recent improve-
ment. If 23C is an improvement over 13C, perhaps } if possible } the next trial
should be 33C. Introduction of ordinal settings and more complicated distance
measures could very well make the model more interesting. We leave this for
future research.

Dexnition (Neighbors). Let Nd(u) be the set of d-neighbors of recipe u,

Nd(u)"Mu@3X Dd(u , u@)"dN,
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11Except for some of the underlying stochastic structure, which is speci"ed in Section 5.

12See Coase (1937) and Williamson (1985).

13 In a remark from Tim Sorenson.

14E.g., Arrow (1962), Shell (1973), Lucas (1988), and Romer (1990).

15 In conversations with us, Henry Wan has also stressed the importance of not confusing the
reader with these very di!erent uses of the term &externality'.

where d is a positive integer. Then NI d(u), de"ned by

NI d(u)"Gu@3X D u@3 Z
i/1,2,d

N
i
(u)H,

is the set of recipes at least distance 1 from u but not more than distance
d3M1,2, nN from u.

With our de"nition of distance between recipes, it is straightforward to
construct the technological graph C. The nodes (or vertices) of C are the recipes.
The edges of C connect a given recipe to recipes distance 1 away, i.e. to the
elements of N

1
(u).

We next de"ne the input requirement "eld, which is a full description of all the
basic technological possibilities facing the "rm.

Dexnition (IRF). The input requirement xeld (IRF) is the random "eld /(u)
(de"ned over the vertices of the technological graph C.)

In order to derive concrete results, we must further specify the IRF. In the next
subsection, we specify the relationship between the random variables /(u) and
/(u@), which in general are not independent. After that, we specify the functional
forms for the /i(u). This speci"es11 the IRF, but it does not &close the model'. To
do that, we will need a complete theory of which recipes are chosen for
production and what is learned by the "rm from its experience.

2.5. Intraxrm externalities

Typically, there will be some external economies and diseconomies among the
operations. Indeed, a central role of the "rm is to internalize these externali-
ties.12 In the current paper, we do not analyze inter-"rm external economies. For
this reason it has been suggested13 that what we are analyzing here should be
called intranalities rather than externalities. There is no obvious, direct connec-
tion with the externalities in the present paper and those that underlie several of
the basic macro models14 of technological evolution.15
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16 In the application of this model to learning by doing, the parameter n is directly analogous to N,
and the parameter e is directly analogous to K#1 of the NK model. See Kau!man (1993), Chapters
2 and 3).

We assume that the costs of a given operation depend on the chosen instruc-
tions for that operation and possibly on the instructions for some (but not
necessarily all) of the other operations. De"ne the connectivity indicator ei

j
by

ei
j
"G

1 if the choice of setting for operation i affects
the labor requirement for operation j,

0 otherwise

for i, j"1,2, n. Since the choice of the setting for the ith operation always
a!ects the costs for the ith operation, we have

ei
i
"1

for i"1,2, n. The number ei of operations with costs a!ected by operation i is
given by

ei"
n
+
j/1

ei
j

for i"1,2, n, while the number e
i

of operations that a!ect the costs of
operation i is given by

e
i
"

n
+
j/1

ej
i

for i"1,2, n. De"ne E
i
, the set of operations cost-relevant to operation i, by

E
i
"M j3M1,2, nN D ej

i
"1N

for i"1,2, n.
We make the simplifying assumption that each operation is cost-a!ected by

(e!1) other operations, so that we have

dE
i
"e

i
"e

for i"1,2, n, where e3M1,2, nN.16 Under this assumption, the labor
requirement of any given operation is a!ected by the instructions for that
operation and the instructions for exactly (e!1) other operations. Therefore,
there are exactly se permutations of the instructions that a!ect the costs of
operation i. We refer to one of these as a subrecipe cost-relevant to operation i.
Let Mi

1
,2, i

e
N denote the elements in the set E

i
"M j D ej

i
"1N for i"1,2, n.

Then denote by (ui1,2,uie) a subrecipe cost-relevant to operation i (where
for convenience we de"ne i

1
to be equal to i) for i"1,2, n. The set of
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subrecipes cost-relevant to operation i is a projection of the sn recipes into
se subrecipes. There are nse such subrecipes in all. The stochastic unit labor
requirement for operation i based on the subrecipe (ui1,2, uie)"uie can
be written as

/i(ui1,2,uie) or /i(uie)

for i"1,2, n, with only slight abuse of notation.
The parameter e } while not necessary in a general recipes model } plays

a crucial role in our present analysis. If e"1, there are no (intra"rm)
external e!ects among the operations. Each of the operations could also
have taken place in separate "rms, since in this case there can be no gains
from coordination. With e"1, we would also expect the two random variables
/(u) and /(u@) to be highly correlated if u@ is close to u, since by de"nition
u@ and u would have many instructions in common and hence /i(u)"/i(u@)
for most i. The larger the parameter e, the less correlation one would be
expect between /(u@) and /(u) even for u@ close to u. This is because the
change in the instructions for one operation a!ects the costs of several other
operations. Hence e is an inverse measure of the correlation between /(u@)
and /(u) for u@ close to u. The corresponding landscape l(u) (a realization
of the IRF) is typically &correlated', or &smooth', for small values of e, while l(u)
is typically &uncorrelated', or &rugged', for large values of e.

We now turn to our concrete application.

3. Learning-by-doing

3.1. Introduction

Our goal is to use our recipes approach to provide a microeconomic founda-
tion for observed learning by doing in production. In particular, we specify our
complete model of production (the IRF) (which includes inputs, outputs, and
recipes; and current technologies and nascent technologies) and then &close' it in
an attempt to model shop-#oor productivity improvements and hence to ex-
plain the observed empirical features of the "rm's experience curve. We have
three reasons for doing this:

f The learning-by-doing model is important in its own right for economic
theory and economic policy. It would be worthwhile to understand the micro
sources of the productivity increases and what promotes them, rather than
merely representing this process as a "xed macroeconomic externality.

f Empirical experience-curve analysis is central to management science and
management practice. It would be desirable if these experience curves could
be explained in terms of basic microeconomics.
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17See Section 5.1 for a detailed description of the software and the hardware we employ.

f Our theory of production recipes (and nascent technologies) is meant to be
quite general, with possible applications for modeling R&D, basic research,
and technology transfer. Before going forward, such a general theory should
be tested by at least one concrete application. There are three reasons why
learning by doing is a good candidate for this application:

f C Empirical studies of engineering experience curves are abundant.
f C Learning-by-doing permits us to be relatively less sophisticated in

modeling the purposiveness of the economic agents, so that we can focus
} for now } on our relatively sophisticated model of technology.

f C The one input/one output learning-by-doing model allows us to use
} with only minor modi"cations } a tested computer simulation pro-
gram.17

3.2. &Trials' in the production process

We assume that shop-#oor workers follow the recipe (or blueprint) provided
by management, but from time to time, they make small modi"cations in the
current recipe. We refer to these modi"cations as trials. Depending on the
context or the interpretation, the trials may also be thought of as errors or
informal experiments.

A trial occurs when (1) at least one operation in the production recipe is
modi"ed and (2) that modi"cation is observed and it is evaluated by the "rm
(perhaps by the quality-control engineers). We assume that modi"cations occur
during the production of a batch, and that observation and evaluation occur
when the production of the batch is completed. We further assume that there is
only one trial per quality-control batch. This assumption is not restrictive: since
the quality-control batch size, B, may or may not equal the measured batch size, BK ,
used in data gathering. We introduce the batch deyator, q, de"ned by

q"BK /B,

where B is de"ned so that exactly one trial is made during the production of the
quality-control batch. If q is a positive integer, then it is interpreted as the
number of trials per measured batch. In general, q3R

``
is interpreted as

the average number of trials per measured batch. We have

ql1 as BK mB.

One would expect q to depend on the particular type of manufactured good.
The trials parameter q is likely to be larger for airframes than for steel bars,
because the production of an airframe is more complex than the production of

P. Auerswald et al. / Journal of Economic Dynamics & Control 24 (2000) 389}450 401



18Actually, the simulation program was adapted to permit retrogressions, but we did not
experiment su$ciently with this feature to report on it here. It seems to us that the analysis of
retrogressions is well worth doing } both for learning by doing and for evolutionary biology.

a batch of steel bars. The trials parameter, q, also depends on management
practices, corporate culture, and worker psychology. In a tight production
environment, there would be fewer defects, but fewer trials. In a looser produc-
tion environment, there would be more defects, but also more trials. Hence
management is likely to be keen to attempt to control q if possible to achieve an
optimal balance between &sloppiness' and &inventiveness'.

A trial can be interpreted in at least three (non-exclusive) ways. The "rst
interpretation is that the trial is a small-scale experiment in production to which
the "rm does not fully commit. This would be a model of R&D in which the only
cost of the R&D activity is the missed opportunity for investigating alternative
recipes during the period in question.

A natural alternative is to assume that the "rm must commit to the new
production recipe in order to sample it: If recipe u

t
is chosen during the

production run t, then the labor requirement for run t will be the realization of
/(u

t
). In this case, unit costs may actually increase from one period to the next,

i.e. cost retrogressions could occur.
A third interpretation is possible. We can think of the "rm operating a large

number of distinct production sub-units in parallel. Each sub-unit begins a
production run at time t with an assumed labor requirement l(u

t~1
), the unit

cost for run t!1. During the course of production run t, a trial in one
production sub-unit leads to production by its sub-unit using recipe u@.
The associated labor requirement for this production sub-unit is then l(u@),
the realization of /(u@). However, because there are many production sub-
units, the average per-batch cost of production is close to l(u

t~1
), the unit

cost of the (pre-trial) reigning recipe. Consequently, in this scenario, we can
think of "rms trying new recipes, without substantial sacri"ces in current
labor requirements. We choose this third interpretation, over the second,
because it allows our simulations to be based on our existing, tested computer
program.18

Next we will further specify the trial dynamics for the "rm.

3.3. Trial dynamics

Production trials occur on the shop #oor level at the rate of 1 per quality
control batch B (or q per measured batch BK ). We assume that the trial recipe is at
distance of at least one but no greater than d3M1, 2,2, nN from the currently
adopted recipe u. We assume that the probability of a trial is uniform over the
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19The probability distribution of trials could be di!erent. For example, a scheme that loads more
probability on the recipes closer to u

t~1
might be more realistic. It would not be di$cult to alter our

computer program to accomodate this. We conjecture that the quantitative e!ect of this change
would be to reduce the big-step e!ect for any given d, but that the qualitative e!ects would not be
altered.

20 If n"2, then the p.d.f. is a tent with an altitude of 2.

21 If m"2, then the p.d.f. is a tent on [l, l#(m/n)].

neighborhood NI d(u).19 That is, the extent of modi"cation of existing recipes is
limited to recipes that di!er from the currently prevailing recipe by no more
than qd operations } the number of trials per production run multiplied by the
number of operations of the recipe that can be altered in a single trial.

The recipe adoption process is very simple. The "rm is myopic: if u
t~1

is the
prevailing recipe and u@

t~1
is the trial recipe, then the prevailing technology for

period t, u
t
, will be given by

u
t
"G

u
t~1

if l(u
t~1

)4l(u@
t~1

),

u@
t~1

if l(u
t~1

)'l(u@
t~1

),

where (1)

ProbMu@
t~1

"uN"G
1/dNI d(ut~1

) for u3NI d(ut~1
),

0 for u NNI d(ut~1
)

for t"1, 2,2.
System 1 de"nes the cost-reduction dynamics. (This is a process in which the

"rm moves from vertex to vertex of the technological graph C that underlies the
IRF. If d"1, then the "rm moves along the edges of the graph C to the next
vertex.)

3.4. Current and nascent recipes

For the nascent subrecipes, we assume that the random variables /i(uie) are
i.i.d. and uniform on [0, 1/n]. Hence if all the relevant subrecipes of u are
nascent, then the support of /(u) is [0, 1]. If n'1, the density function of /(u) is
then W-shaped and symmetric about 1

2
, the modal labor requirement.20 If uie is

currently available, then /i(uie) is a degenerate random value, in which all of the
probability is massed on a scalar li(u)3[0, 1/n]. If u is currently available, then
/(u) is a degenerate random variable, in which all of the probability is massed
on a scalar l(u)3[0, 1]. If m of the subrecipes of the recipe u are nascent (while
the remaining n!m subrecipes are currently available), then the support of /(u)
is [l, l#(m/n)], where l is a scalar in [0, (n!m)/n]. On the interval
[l, l#(m/n)], the p.d.f. is W-shaped and symmetric if m'1.21
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22 In the case of airframes, one airframe is equal to one measured batch. In this case,>
t
is the serial

number of the last airframe in production run t.

The assumption that the support of /(u) is contained in [0,1] is not in-
nocuous. The fact that a zero labor requirement is possible could in principle
be disturbing, but we do assume that the probability of such a free lunch is
zero. The assumed boundedness of unit cost is more serious. In actuality,
many untried recipes turn out to be totally useless, i.e. with the realization
l(u)"#R. The assumption of boundedness from above of unit labor re-
quirements is an unrealistically optimistic assumption about prior beliefs
about untried recipes.

Before reporting the results of our computations, we turn to a review of the
existing literature on engineering experience curves.

4. Engineering experience curves

4.1. Introduction

In this section, we formally describe experience curves and review the (largely
empirical) literature on them. This goes beyond mere motivation: we use the
statistical outputs of the existing studies as inputs for our work. We don't redo
the existing experience curve analyses (even though this might have been
worthwhile); we use instead the calculated regression coe$cients and their
standard errors as our observations.

Few empirical phenomena in production economics or management science
are as well documented as the experience curve. It depicts the decline in the
"rm's per-unit labor requirement (or cost) with the cumulative production
of a given manufactured good. Following Wright's (1936) study of the air-
frame industry, this pattern has been investigated for many di!erent goods
and industries.

The usual parametric form of the experience curve is the power curve,

l
t
"a>~b

t~1
, (2)

where l
t
is the unit labor requirement for production run t,>

t~1
"+ t~1

s/1
y
s
, is

the cumulative output up to (but not including) run t,22 b'0 is the learning
coezcient, and a'0 is the labor needed to produce the "rst batch of the good.
The learning coe$cient represents the rate at which productivity increases as the
"rm acquires &experience'.
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Fig. 2. A histogram of estimated "rm progress ratios from Dutton and Thomas (1984).

4.2. Progress ratios

A commonly used measure of productivity improvement is the progress ratio.
The progress ratio p is related to the learning coe$cient b by

p"2~b or b"!log
2
p.

The percentage cost reduction when cumulative output is doubled is (1!p). If
b"1

3
(&Wright's Law'), then we have p"79%. If b"0.30, then we have

p"81% (see the mode in Fig. 2). Somewhat perversely, a small progress ratio is
an indicator of rapid cost improvement, while a higher progress ratio indicates
less cost improvement. A p value of 79% means that per-unit cost falls by 21%
when cumulative output is doubled. A p value of 81% means per-unit cost falls
by 19% when cumulative output is doubled. A p value of 100% means that
per-unit cost is constant. A p value greater than 100% means that unit cost is
increasing.

The power law given in Eq. (2) yields the straight line in log/log space

log l
t
"log a!b log>

t~1
,
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23See Abernathy and Wayne (1974).

24See Conway and Schultz (1959) and Balo! (1971).

25See Levhari and Sheshinski (1973) and Epple et al. (1991), (pp. 65}69).

where l
t
is the average unit labor requirement (or cost) of producing the goods

with serial numbers greater than >
t~1

but less than or equal to >
t
.

4.3. Summary of empirical xndings

In Table 1, we display some observed estimates of the learning coe$cients and
the progress ratios from "rm-level experience curves (by industry). From this
and the review articles by Conley (1970), Yelle (1979), Dutton and Thomas
(1984), Muth (1986), and Argote and Epple (1990), we conclude that the salient
characteristics of experience curves are:

f The distribution of progress ratios ranges from 55% (rapid progress) to 105%
(slow } indeed negative! } progress) and &centers' on about 81}82%. See
Table 1 and Fig. 2.

f Distinct production processes and goods are associated with their own ranges
of values for the estimated progress ratio p( . See Table 1.

f There is variation in progress ratios not only among "rms in the same
industry, but also among di!erent plants operated by a single "rm. See
Alchian (1963), Dutton and Thomas (1984), (pp.236}239), and Epple et al.
(1991).

f The speci"cation of the OLS least-squares statistical model, l
t
"a>~b

t~1
e
t
with

log e
t
&N(0,p), is imperfect in (at least) two ways:

f C There are &plateau ewects' in the observed data:23 (1) Improvements occur
after relatively long stretches of constant labor requirements, and (2)
improvements in labor productivity cease beyond some (su$ciently large)
cumulative output.24 The (hypothetical) empirical experience curve of
Fig. 3 illustrates both types of plateauing: the labor requirement l is
falling from t"0 to t"10, but not strictly monotonically. There is an
interior plateau at batches 3}5. Productivity improvements cease after
batch 7, providing a terminal plateau.

f C There is curvature misspecixcation.25 Instead of a straight line in log/log
space, the data suggest that an S-shaped curve would often (but not
always) "t better: often the data suggest concavity of the function over the
early batches, but convexity of the function over the later batches. We call
this the SFS phenomenon } cost improvement is "rst Slower, then Faster,
and "nally Slower than suggested by the straight-line log/log "t. See Fig.
4. (In many observed production runs and many of our experiments, the
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Table 1
Estimated progress ratios p( (and the corresponding learning coe$cients bK ) for a variety of industries

Industry p( bK d obs Method Cost Source
(%) measure

Aircraft production! 71 0.50 112 2SLS Labor hours" Benkard (1998),
Table 1

Apparel! 78# 0.41# 33(3) OLS Labor hours$ Balo! (1971),
Table 2

Automobile
assembly%

84# 0.26# 17(3) OLS Labor hours" Balo! (1971),
Table 3

Chemical
processing&

77 0.38 300 ML Price' Lieberman
(1987), Table 6

Musical
instruments!

83# 0.29# 82(6) OLS Labor hours" Balo! (1971),
Table 7

Semiconductors& 76# 0.41# 127(9) OLS Average
revenue)

Webbink (1977),
Table III-2

Semiconductors& 80# 0.32# 257 OLS Price' Irwin and
Klenow (1994),
Table 1

Truck Assembly! 90 0.15 99 OLS Labor hours" Epple et al.
(1991), Table 1

The entry in the dobs column is the number of di!erent production observations in the learning
curve. Where averaged coe$cients are reported, it is the total number of observations in the study
(and the number of parallel equations estimated is given in parentheses). All estimated coe$cients
are reported in the sources as signi"cant (better than 5% con"dence).
!Single plant, single product learning curve.
"Direct labor hours per unit of output.
#Average of more than one estimated coe$cient value.
$Direct labor burden per unit. See Balo! (1971), p. 334 for description.
%Single "rm, multiple plant, multiple product learning curve.
&Industry aggregate learning curve, single product type.
'Price per unit of output.
)Average revenue per unit output.

right-hand tail of the productivity plot is truncated before the suggested
convex range of the function can be observed.)

f Industry experience curves (in which the data on cost as a function of
cumulative output is averaged over several "rms) are smoother than the
corresponding single-"rm experience curves, which in turn are smoother than
single-plant experience curves: there are fewer plateaus and the lengths of the
interior plateaus are shorter for the averaged data. See the survey by Dutton
and Thomas (1984).
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Fig. 3. Hypothetical illustration of the phenomenon of `plateauinga.

In the following section, we analyze the comparative dynamics of our model
of shop-#oor learning by doing. In particular, we report the e!ects of varying the
following basic parameters of the model:

f n, the number of operations
f s, the number of instructions per operation
f e, the externality parameter
f d, the maximum number of steps per trial
f q, the number of trials per measured batch
f ¹, the length of the production run

on the two basic predictions of the model:

f p6 , the sample mean of the estimated progress ratios
f s

1
, the sample standard deviation of the estimated progress ratios
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Fig. 4. Hypothetical illustration of the SFS (Slow Fast Slow) misspeci"cation.

and on two measures of model misspecixcation:

f plateauing (or its inverse, the improvement percentage z)
f curvature (or SFS) in log/log space.

The basic parameters of the model are summarized in Table 2. The third
column gives the range over which each parameter is de"ned. Noninteger
values of q would have been possible. The interpretation of (say) q"1

3
is

that a trial occurs once in every three production runs. Our computations
involving the fractional q and other noninteger values of q were not com-
prehensive, so we are not reporting these experiments. This deserves further
study.
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Table 2
Summary of parameters

Parameter Description Range

n Number of operations per
recipe

Positive integers

s Number of instructions per
operation

Positive integers

e Number of intra"rm
externalities per operation

M1,2, nN

B (Quality-control) batch size 1
q Number of trials per measured

batch BK
Positive integers

d Number of operations altered
per trial

M1,2, nN

¹ Length of the production run Positive integers

26See the survey by Bona and Santos (1997) for standards in reporting the results of computa-
tional experiments.

5. Computation

5.1. Hardware, software, and strategy

We performed our computations26 on a Dell Dimension XPS Pro 200 PC
with a Pentium Pro 200MHz processor running Windows 95 (ver.4.00.950 B).
The core program used in our simulations was written by Bennett Levitan,
building on work by William Macready and Terry Jones. We performed our
regressions, computed the summary statistics, and generated the plots with
SPSS Windows ver. 7.5 and Matlab Windows ver. 4.0. Additional routines used
to compute and generate the simulations from the random parameter set
(described in Section 5.8) were written by Auerswald. Both Levitan's and
Auerswald's programs incorporate a random number generator written by
Terry Jones, based on the algorithm of Knuth (1981), pp. 171}172. The pro-
grams of Levitan, Jones, and Auerswald are written in C; they are available to
interested researchers.

Our most fundamental unit of analysis is a single realization of the production
run, examples of which are displayed in Figs. 5}8. Each production run is then
a &walk' (i.e. an instance of the dynamics described in Section 3.3) on a landscape
(i.e. a realization l(u) of the IRF /(u) described in Section 2). In Figs. 5}8, the
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27Unless otherwise indicated, &log' denotes &the natural logarithm of '.

log of time } or, equivalently, the log of the cumulated number of batches to date
} is on the horizontal axis, while the normalized log of the unit labor require-
ment for the currently prevailing technology is on the vertical axis. Each &point'
in one of these "gures is a &step' in the &walk'. The line in one of these "gures is the
OLS linear "t to the points in that "gure.

Computation of a single production run took between 5 seconds and 5min-
utes. Computational time was increasing in n, s, and ¹. For every chosen
parameter vector, we computed a set of 20 experience curves. This required
between a minute and 2 hours for each chosen parameter vector. Because of the
large number of production runs, we do not report here the random seeds, but
they are available to interested researchers.

5.2. Detailed description of the model and computation

We have yet to completely de"ne the externality connections from one
operation in a given recipe to other operations in that recipe. If we had some
engineering information about these connections we might want to use this
prior information. In the absence of engineering priors, we draw for each
production run the (e!1) connections to operation i uniformly (without replace-
ment) from the set of all operations other than i.

We now have completely de"ned the landscape l(u) and the method of
&walking' on this landscape. All that remains to be speci"ed is the starting point
(on the landscape) for the walk. For some applications, the starting point might
be given by information about the production experience of competitors or
suggestions from the "rm's R&D department. In the absence of such prior
information, we merely pick randomly one recipe (with uniform probabilities
over the sn recipes) to be the starting point. We re-normalize the log27 of the
labor requirement so that the adjusted log of the initial unit labor requirement is
1.0. Here the relationship between the labor requirement l and the adjusted log
labor requirement is given by

adjusted log labor requirement"1#log l.

The adjusted log labor requirement is negative for l(0.36787. Negative values
of this convenient measure should cause no problems (though it would be
economic nonsense if unadjusted l were to be negative).

It is typically impractical or infeasible to compute the entire landscape of
sn realized labor requirements (even if we use the fact that there are only nse
subrecipes). A better approach is to compute &on the #y' the realized labor
requirements for a given walk on the landscape. Our program calculates realized
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28Before each walk, the program draws two vectors of seeds for the random number generator,
one of length n and the other of length e. These two vectors of seeds, combined with the local
characteristics of a subrecipe, are su$cient to de"ne unique and consistent values for all subrecipes
in the landscape. In this manner, we trade o! some computational speed for e$ciency in storage.
Further information is available in the &comments' within the computer code (which is available to
interested researchers upon request).

29 In general,> is the appropriate measure of &economic time' for a given production run. If q"1,
&calendar time' t and &economic time' > are the same. Otherwise, t must be adjusted to measure
economic time.

values on the #y after "rst calculating some random number generator seeds28
and then calling the random-number generator at each step in the walk to
compute the realized labor requirement for the trial recipe, u@

t~1
.

5.3. Summary data from a single production run

For each realization of a single production run, the estimated progress ratio
p( is given by p("2~bK , where bK is the OLS estimate of the learning parameter b,
i.e. bK is the absolute value of the slope of the regression line. If q"1, then the
labor requirement at t, l

t
, and cumulative output upto t,>

t~1
, correspond to

what is used for estimating bK and p( in the existing studies on experience curves. If
qO1, then > will not be equal to the cumulative number of trials that de"ne
time in our model. The relationship between t (cumulative number of trials),
> (cumulative output), and q (number of trials per measured batch) is29 q"t/>.
In computational terms, if ¹ is "xed, then increasing q decreases the number of
simulated points. Trials take place and labor requirements are modi"ed at each
date t, but not all modi"cations are recorded. For example, with q"20 (and
B"1 as assumed), calculation of the per-unit labor requirement would not
occur until after the 20th unit was produced, and not again until the 40th unit,
and so on. Under the assumption of ¹"1000 and q"1, we observed 1000 data
points in a given simulated experience curve, but with q"20 we would observe
only 50 data points.

Another quantity that can be used in measuring cumulative increases in
productivity is l

T
, the labor requirement after ¹ trials (or the xnal labor

requirement, for short). Our focus is on the path of productivity increases, not on
the initial labor requirement, so we normalize the initial labor requirement l

0
by

l
0
"1. The "nal labor requirement l

T
is usually (but not always!) inversely

related to bK : usually, the lower the "nal labor requirement the steeper is the
experience curve. If there were no speci"cation error of the experience curve, this
would always be the case and l

T
would be an uninteresting statistic. However, if

there were huge productivity increases in the "rst few periods after which the
labor requirements asymptote, for ¹ large bK would then be small because OLS
would heavily weight the asymptote. In this case, the fact that l

T
is small
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indicates that the estimated learning coe$cient bK (and hence the estimated
progress ratio p( ) might be misleading.

In order to capture the extent of plateauing, we compute an (inverse) statistic
z, the improvements percentage per measured batch, de"ned by

z"
q]number of observed improvements

¹

.

We prefer z to direct measures of plateauing (e.g. average plateau length)
because it is less sensitive to the distortions caused by the presence of a long "nal
plateau. For experience curve analysis, the transient is of greater interest than
the steady state, since in most real-world cases, the rate of product replacement
(due to, say, a new, superior product) is rapid relative to the exhaustion of
productivity improvements for the original product. We weight the total num-
ber improvements observed by q/¹ so that the measure will re#ect, not the
absolute number of improvements found, but rather the likelihood that a new
observation will be a productivity improvement.

Finally, in order to measure the extent of curvature misspeci"cation in the
experience curve data, we estimate a second quadratic speci"cation of the
learning model:

log l
t
"a

2
#b

2
log>

t~1
#c

2
log>2

t~1
#e

t
,

where l
t
is the labor requirement after cumulative production of>

t~1
units. The

magnitude, sign and level of signi"cance for c(
2
, the estimate of c

2
, gives one

indication of the extent of curvature misspeci"cation in the standard log}log
model. A negative and signi"cant c(

2
would suggest that the log}log form

overstates the rate of early relative to later productivity improvements. This is
not a test of the full SFS e!ect. A negative value of c(

2
suggests the observed run

exhibits SF ("rst slow and then fast). Often the second S of SFS is outside the
observed or calculated production run.

5.4. Single experience curves: A look at the xgures

Fig. 5 represents a single experience curve for the base parameter vector:
n"100, s"10, e"5, q"1, d"1, ¹"1000. These parameters were chosen
to be reasonable for the current exercise. Our experience in choosing these
parameters came from comparisons and contrasts with the literature on evolu-
tionary biology, introspection about typical production processes, and mostly
comparisons of the results of some preliminary experiments with the existing
empirical literature. Our priors about the validity of these parameters were not
very strong. Hence we sampled widely in the space of parameters, but in many of
our experiments (173 experiments out of 423) we sampled the parameter space
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Fig. 5. Base parameter experience curve.

by moving only one parameter at a time while holding the others at one of its
base values. This is a particular type of sensitivity analysis.

In Fig. 5, the landscape is not perfectly smooth since we have e"5'1.
Plateauing is also evident throughout the production run. This is con"rmed by
the small value of z: only 6.2% of the trials lead to improvements in productivity.
Overall productivity increase is moderate; this is con"rmed by the estimated
progress ratio of 87.5%. There also seems to be a positive SFS (curvature) e!ect,
but it is not strong. In Fig. 6, two changes have been made in the parameters to
set e"1 and n"1000, so that the landscape is now as smooth as possible
(because e"1) and because single-step improvement is likely to be small
(because n is large and e"1). With the smooth landscape, plateauing (except for
terminal plateauing) is so reduced that it cannot be detected in eyeballing
the "gure. This is con"rmed by the value of z: 42.3% of the trials result in
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Fig. 6. Walk on a smooth landscape.

productivity improvements. The estimated progress ratio of 94.6% indicates
a relatively slow rate of productivity improvement, but p( is upward biased
because of the SFS e!ect, which seems to be more pronounced. (One must be
careful, however, not to visually overweight the sparse plot in log units for the
early periods (relative to the later periods) in evaluating the SFS e!ect; the later
data points are more crowded together than the early data points.) If the
quadratic model were "tted to the plot in Fig. 6, we would expect c(

2
to be

signi"cantly negative, since the plot suggests a concave function. (Note that the
plot displays clearly the SF of SFS, but that the "nal S is not displayed in the
plot, because of the truncation at log batch number "7.)

In Fig. 7, the externality parameter e has been increased to its maximum
relative to n (e"n"100). The landscape is very rugged because of the very
large e. Consequently, plateauing is very strong (only 1% of the trials lead to
improvements) and overall progress is very small (p("97.8).
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Fig. 7. Walk on a rugged landscape.

In Fig. 8, we have e"1 so there are no externalities to cause a rough
landscape. But n is reduced to 10 while s is increased to 100. The number of
operations is few, so that a change in any operation can be expected to have
a large impact on the labor requirement. This is re#ected by very rapid overall
productivity improvement, which is con"rmed by the value of the estimated
progress ratio of 60.2%. Plateauing is evident (z is only 4.4%). The SFS e!ect is
evident, although the caution against overweighting the sparse early realizations
also applies here.

In Figs. 5}8, we reported only one production run. Each of Figs. 9}13 pres-
ents averaged data of multiple production runs based on a given vector of
parameters. Fig. 9 is the same as Fig. 5 except in Fig. 9 the data is averaged over
20 separate production runs. The vertical axis in Fig. 9 measures the adjusted
log labor requirement of the industry average over 20 "rms or, alternatively the
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Fig. 8. Small n, small e, large s.

adjusted log labor requirement of the "rm average over 20 plants. The most
important di!erence between the outputs in Fig. 9 and Fig. 5 is the degree of
plateauing. The curve in Fig. 9 is far smoother than the curve in Fig. 5.
Plateauing is evident in Fig. 5, while it is barely discernible in Fig. 9. This is
con"rmed by the z statistics: in the single-run case only 6.2% of the trials result
in improvement, while in the 20-run average, 65% of the trials result in
improvement. The estimated progress ratio (87.5%) for the single-"rm walk is
very close to the estimated progress ratio (86.5%) for the average walk of the
20 "rms. The small, but positive curvature e!ect seems to be the same for
Figs. 5 and 9.

Fig. 6 is based on a correlated landscape (e"1) and hence the single run is
quite smooth, but some plateauing is discernible. The average walk shown in
Fig. 10 is even smoother. For the single run depicted in Fig. 6, p("94.6% and
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Fig. 9. Base parameter vector, industry average of 20 "rms (compare with Fig. 5).

z"42.3%. For the averaged run depicted in Fig. 10, p("94.6% and z"99.9%.
The strong positive curvature e!ects in the two "gures are nearly identical.

The landscape behind Fig. 7 is very rugged (e"100). Plateauing is dominant.
Only 1% of the trials result in improvements. Fig. 7 is the 20-"rm average run
using Fig. 7 parameters. Plateauing is reduced; 7.8% of the trials result in
improvement. Fig. 12 is the 50-"rm average run based on the same rugged
landscape data. Plateauing is further reduced; 15.7% of the trials result in
improvements. The estimated progress ratio for each of the 3 cases (Figs. 7, 11
and 12), is about 98%. It is di$cult to judge the SFS e!ect when there is so much
plateauing, but it is positive and one could argue that the e!ect is constant
across Figs. 7, 11, and 12.

Fig. 13 is the 20-"rm average related to the single-"rm walk in Fig. 8. The
averaging reduces plateauing (increases z), has no e!ect on the progress ratio or
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Fig. 10. Smooth landscape, industry average of 20 "rms (compare with Fig. 6).

30The "rst and possibly the second conclusions would seem to be susceptible to analytic proof.

31See the survey by Dutton and Thomas (1984).

the terminal labor requirement, and seems to reduce the SFS e!ect but only
slightly.

From these experiments, we make the following tentative conclusions:30

f Averaging profoundly reduces plateauing (and increases z).
f Averaging does not substantially a!ect the estimated progress ratio.
f Averaging does not seem to have a strong e!ect on curvature or SFS.

These are consistent with actual observations of the "rm and industry experi-
ence curves.31
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Fig. 11. Rugged landscape, industry average of 20 "rms (compare with Fig. 7).

32 In particular, we are interested in sample standard deviations as well as sample means for our
predictions. This is mainly to match observations. Sample standard deviations also play a central
role in industrial organization studies.

5.5. Multiple realizations from the same vector of parameters

Many of the qualitative features of experience curves } ranges of values of p( ,
presence of plateaus, di!erent learning rates for the same or similar goods } can
be discerned by examining single realizations of learning curves. However, to
study the full e!ects of changes in the values of the underlying parameters on the
predictions of the model, we need to compute more than one realization per set
of parameter values.32 Consequently, for each chosen parameter vector in our
experiment, we computed 20 independent realizations.
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Fig. 12. Rugged landscape, industry average of 50 "rms (compare with Figs. 7 and 11).

In our simulations, computing 20 di!erent realizations means running the
simulation program using the same parameter set, but with 20 di!erent random
seeds. A new random seed yields a new realization of the externality connection
among the operations, a new realization of the landscape l(u), a new starting
point on the landscape and hence a new experience curve. Hence we have chosen
in this class of models the &maximum degree of randomness' between di!erent
realizations of the experience curve. (Even if the sets of connections E

i
(i"1,2, n), the realization of the landscape, l(u), and the starting recipe, u

0
,

were all to be held constant, di!erent realizations of the experience curve would
still be possible (indeed almost certain) due to di!erent sequences of recipe
sampling.) The sample standard deviations that we compute are therefore likely
to be biased upward.
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Fig. 13. Small n, small e, large s, industry average of 20 "rms (compare with Fig. 8).

The set of potentially interesting parameters is large. We restricted out
computations to the following grid-like parameter space:

f n"1, 10, 20, 50, 100, 500, 1000;
f s"2, 10, 25, 50, 75, 100;
f e"1, 2, 3, 5, 6, 7, 8, 9, 10, 25, 50, 75, 100 (but with the constraint that

e4n);
f d"1, 2, 4, 10, 25, 50, 75, 100 (but with the constraint that d4n);
f q"1, 10, 50, 100, 250 (but with the constraint that q4¹);
f ¹" 100, 500, 1000, 5000.
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33Actually, 5 is not a small value for the parameter e when n"100 or n"1000. In fact, (e!1)
gives the number of externalities per operation. So the number of externalties per recipe would be
n(e!1).

5.6. Parameter sets and scoring procedures

We worked with two subsets of parameters. The "rst subset, the focused set of
parameter values, re#ects our priors informed by our review of the empirical
literature, introspection about production processes, and comparisons with the
modelling in evolutionary biology. To achieve the rapid productivity increases
that have been observed, we focused on rather small values of e and d (in
particular: e"1, 5 and d"1) relative to n and relatively low values of s (in
particular: s"2, 10).33 The length of the run was frequently set at ¹"1000.
This was chosen to reduce or eliminate the e!ects of the terminal plateau. See the
center panel in Fig. 20, which con"rms our strategy. For s"10, n"100, e"5,
the mean progress ratio is smallest for ¹"1000. For ¹'1000 the e!ect of the
terminal plateau is to increase the progress ratio. For many runs, we adopted
n"100 for the number of operations. For many of our runs we adopted q"1.
Our base cases for the focused runs are then:

f (n"100, s"2, e"1, d"1, q"1, ¹"1000),
f (n"100, s"10, e"1, d"1, q"1, ¹"1000),
f (n"100, s"2, e"5, d"1, q"1, ¹"1000),
f (n"100, s"10, e"5, d"1, q"1, ¹"1000).

The focused parameter set was constructed from the above four base-case
vectors by varying the six parameters one at a time. Summary statistics for the
focused parameter set are given in Table 3. There are 173 parameter vectors in
the focused set. For each vector there are 20 runs, so the total number of runs is
3460.

If the parameter space were only of dimension 2 and there were only a single
base case, our method of choosing parameters would be that described in
Fig. 14. Say the base parameter vector is given as row 3, column 5 of the simple
10]10 matrix recipe set in Fig. 14. Then the set of focused parameters is the
union of the set of recipes having a row-3 component with the set of recipes
having a column-5 component. The focused parameter set is in the shaded
&cross'. The advantage of the focused parameter method is that we begin with
a set of reasonable base parameters and then we test the sensitivity of the
predictions to each of these parameters varied one at a time from each of the
base vectors. The parameters are often set at &extreme' values to test parameter
sensitivity. On the other hand, as can be seen from Fig. 14, this selection of
parameter points is clearly &statistically ine$cient' and our results could be
sensitive to our choice of base parameter vectors. As a counter to these potential
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Table 3
Summary statistics: the focused parameter set (173 parameter vectors; 20 runs per parameter vector)

Minimum Maximum Mean Std. deviation

Parameters
n (dops.) 1.0000 100.00 179.855 308.577
s (inst./op.) 2.0000 100.00 15.8150 24.3057
e (ext. par.) 1.0000 100.00 9.653179 21.5503
d (max. trial dist.) 1.0000 100.00 11.9653 27.0370
¹ (length of run) 10.0000 1000.00 704.740 371.619
Results
p6 (mean prog.) 60.8610 100.00 89.8573 10.7914
s
p

(st. dev. prog.) 0.0000 23.0056 2.407138 3.221978
z6 (mean imp. percent) 0.0000 98.4000 24.1670 27.7214
c6
2

(mean curv.) !0.1315 0.1634 0.0040 0.042
s
c2

(st. dev. curv.) 0.0000 0.4245 0.025 0.047

Fig. 14. Construction of the focused set of parameters in a simpli"ed set of recipes.
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Table 4
Summary statistics: the random parameter set (250 parameter vectors; 20 runs per parameter vector)

Minimum Maximum Mean Std. Deviation

Parameters
n (dops.) 2.0000 999.00 499.3160 288.9405
s (inst./op.) 2.0000 99.00 50.8000 28.4154
e (ext. par.) 1.0000 10.00 5.4000 2.8725
d (max. trial dist.) 1.0000 10.00 5.4880 2.8653
¹ (length of run) 1000.00 1000.00 1000.00 0.0000
Results
p6 (mean prog.) 74.36 95.72 91.6939 3.4291
s
p

(st. dev. prog.) 0.30 9.81 8.9121 5.5263
z6 (mean percent imp.) 0.66 36.24 8.9121 5.5263
s
z

(st. dev. percent imp.) 0.13 1.79 0.5825 0.2580
c6
2

(mean quad. coef.) !0.07 0.09 !0.017 0.0128
s
c2

(std. dev. quad. coef.) 0.00 0.07 0.00613 0.00750
lM
0

(mean init. labor req.) 0.35 0.52 0.4965 0.0126
sN l0 (std. dev. init. labor. req.) 0.01 0.16 0.0172 0.0158
lM
T

(mean "nal labor req.) 0.05 0.76 0.6052 0.1190
slT (std. dev. "nal labor req.) !0.07 0.09 0.017 0.0128

biases, we also simulated experience curves based on a random set of parameter
values. The random parameter vectors were chosen as follows:

f n drawn uniformly from M1,2, 1000N,
f s drawn uniformly from M1,2, 100N,
f e drawn uniformly from M1,2, min(10, n/2)N,
f d drawn uniformly from M1,2, min(10,n/2)N,
f q drawn uniformly from M1,2, 10N,
f ¹"1000.

The number of parameter vectors in the set of random parameters is 250. There
are 20 runs per vector. Hence there are 5000 runs in all for the random parameter
set. Summary statistics for the random parameter set are given in Table 4.

The parameters selected for the focused set su!er from &Fig. 14 bias'; the
parameters selected for the random set do not. These are not the only di!erences
between the two parameter sets. See Tables 3 and 4. For the parameters n and s,
the ranges and the means are greater in the random set than in the focused set,
but this is reversed for e and d. In the focused set, ¹ was varied between 10 and
1000, but in the &random' set ¹ was "xed at 1000. The means of the p( 's are
similar, but the range and the standard deviations of the pL 's are much larger for
the focused set. The mean of the z's, their range, and their standard deviations
are larger for the focused set. Curvature predictions and terminal labor require-
ments were not assembled for the focused set.
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34Eye-conometrics.

35For an econometrician, the fundamental objection to OLS scoring is, of course, the absence of
a statistical model for mapping parameters into predictions.

We compiled summary statistics similar to those shown in Tables 3 and 4 for
the pooled parameter set constructed by combining the focused and the random
sets, and did some (but not complete) OLS scoring for the pooled parameter set,
but the results are not presented in this paper.

We evaluated the e!ects of varying the parameters of the model using two
scoring methods. For the focused parameter set, we used our judgement from
studying all the relevant simulations. This is called here the eyeball method of
scoring34 parameter e!ects. We believe that the eyeball method is very illumina-
ting, but it does require judgement from the authors. As a guard against human
bias, we also used simple OLS regression scoring for the focused parameters (173
experiments) and the random parameters (250 experiments). The basic disad-
vantage35 to OLS scoring } at least as we do it } is that the results are global:
extreme parameter values are probably overweighted. Furthermore, subtle
nonmonotonic interrelationships are obscured by the simple functional forms
we used for OLS scoring.

5.7. Comparative dynamics: Eyeball scoring

The e!ect of varying a particular parameter on one of the predictions
(or results) of the model typically depends on the interplay of two e!ects: (1)
the e!ect of the parameter change on the size of the recipe space and (2) the
e!ect of the change on the trial (or, recipe sampling) mechanics. Typically,
these e!ects are too complicated to permit an analytic solution, especially
since our focus is on the short term and the medium term. Computation is
called for.

5.7.1. The estimated progress ratio
The ewect of n on pN and s

p
: The "rst e!ect of increasing n is to increase the

number of recipes, sn. This e!ect (especially for large ¹) should tend to increase
long-term productivity improvement. On the other hand, increasing n decreases
(especially when e is small) the expected cost reduction of one-step or few-step
changes in the recipe on unit labor costs, because } given our assumption of
additive unit costs } with more operations each operation contributes less to the
overall cost. This suggests that increasing n might decrease the rate of short-term
(and medium-term) productivity improvement.
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Fig. 15. Comparative dynamics, e!ects of n on pN and s
p
.

In Fig. 15, the sample means, p6 (over 20 runs), and the sample standard devia-
tions, s

p
, are plotted. We observe that for small n the e!ect of increasing n is to

decrease p6 (i.e. to increase the mean rate of productivity improvement), but for
larger n, the e!ect on pN of increasing n is positive. As n becomes even larger, the
e!ect on p6 of increasing n attenuates. The standard deviation, s

p
, is decreasing in n.
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Fig. 16. Comparative dynamics, e!ects of s on p6 and s
p
.

The ewects of s on pN and s
p
: The sole e!ect of increasing the parameter s on the

rate of productivity improvement is through increasing the size of the recipe
space and hence through increasing long-run productivity improvement. From
Fig. 16, we see that this is con"rmed. Increasing s substantially decreases p6 while
slightly increasing s

p
, but each e!ect eventually attenuates as s becomes
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36This suggests that merely adding an in"nity of possible instructions for each operation will not
substantially increase the rate of productivity increase in the model. (This is reinforced by analytic
results in some unpublished work by Gaetano Antinol" and Todd Keister.) Contrast this with the
approaches of Romer (1996) and Weitzman (1996).

37See Auerswald (1999), Chapter 3.

38This argument also suggests that increasing e tends to increase the curvature misspeci"cation.
This e!ect is also present in the simulations.

large. In particular, for s larger than 50 the e!ect on p6 of increasing s is
negligible.36

The ewects of e on pN and s
p
: The most obvious e!ect of increasing e is increasing

the ruggedness of the landscape, thereby reducing the e!ectiveness of the myopic
recipe sampling procedure. As e increases the number of local optima in the
landscape increases, thus increasing the probability of being &trapped'. This
reasoning suggests that p6 would tend to be increasing in e. On the other hand,
increasing the parameter e increases the number of cost-relevant subrecipes
(equal to nse) and thus reduces the expected value of the global minimum labor
requirement. Furthermore, increasing e has the e!ect of speeding the rate of
experimentation, since each trial modi"es the contribution to the labor require-
ment of not one, but e di!erent operations within the production recipe. For
these last two (related) reasons, we might expect p6 to tend to be decreasing in e.

Results for e are given in Figs. 17 and 18. If the recipe space is relatively small
(s(6, n"100), then increasing e seems to decrease p6 for small e, although the
standard errors suggest that we should be cautious in making this conclusion.
The smallest p6 (and the lowest "nal labor requirements) seems to occur at values
of eK5. If the recipe space is larger (s'6, n"100), then p6 and l

T
are clearly

monotonically increasing in e. For large s, the transitory e!ects of e depend on
how much progress has already been made. If l(u

t
) is above the expected value

of /(u) over all of X, then increasing e (for small values of e) increases the
expected rate of short-run productivity improvement. On the other hand, if l(u

t
)

is below the expected value of /(u), then increasing e (for small values of e),
decreases the expected rate of productivity improvement.37 This is because the
ruggedness is helpful in &bad' (high-l) neighborhoods, but hurtful in good (low-l)
neighborhoods. This phenomenon is seen in the simulations.38

The ewects of d on pN and s
p
: Taking bigger steps on a given landscape is

somewhat like walking with smaller steps on a more rugged landscape. Hence,
increasing d should be analogous to increasing e. Like increasing e, increasing
d increases p6 except for some cases with d small; see Fig. 19. There are sugges-
tions in the data that for small d and appropriately chosen values of the other
parameters, p6 is decreasing in d. Indeed, the parameters e and d are close cousins.
Fig. 19 does not suggest any clear e!ect of d on s

p
.
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Fig. 17. Comparative dynamics, e!ects of e on p6 and s
p

(case with s"2).

Ewect of ¹ on pN and s
p
: The length of the production run would not a!ect p6 if

the model were perfectly speci"ed, in particular, if a power law "tted the data
well. Varying ¹ provides a method for analyzing the curvature misspeci"cation
of the experience curve. See Fig. 20. For the case with a relatively small recipe
space (s"10, n"100) and a relatively rugged landscape (e"5), the SFS e!ect
is pronounced. The progress ratio falls from ¹"1 to about ¹"1000 and then
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Fig. 18. Comparative dynamics, e!ects of e on p6 and s
p

(case with s"10).

gradually rises out to ¹"5000. This pattern is also suggested for the case:
s"100, n"10, e"5, but the standard errors are too large for con"dence. For
the case: s"10, n"1000, e"1, the recipe space is very large and the land-
scape is smooth. The estimated mean progress ratio is monotonically decreasing
(with small standard errors) over ¹"1 to ¹"5000 (Fig. 21). The recipe space
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Fig. 19. Comparative dynamics, e!ects of d on p6 and s
p
.

is so large in this case that the e!ects of the second Slow response do not kick in
su$ciently to increase pN even at ¹"5000.

5.7.2. Plateauing
The statistic z (percent of trials that result in improved productivity) is an

inverse measure of plateauing. Increasing the number of recipes by increasing n,
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Fig. 20. Comparative dynamics, e!ects of ¹ on p6 and s
p
.

decreases plateauing with no discernible e!ect on the standard deviation s
z
(see

Fig. 22). Increasing the number of recipes by increasing s decreases plateauing
but increases (except for large values of s) the standard deviation s

z
. Increasing e,

in general, increases plateauing (see Fig. 23). Increasing d, in general, increases
plateauing, but for small e, s, and d, it appears that increasing d reduces
plateauing (see Fig. 24).

P. Auerswald et al. / Journal of Economic Dynamics & Control 24 (2000) 389}450 433



Fig. 21. Plateauing, e!ects of n on z6 and s
z
.

5.7.3. The curvature misspecixcation and the SFS ewect
The positive curvature e!ect is pronounced in Figs. 6 and 11 (smooth

landscape cases with n"1000, s"10, e"1, d"1, q"1, and ¹"1000). Lin-
ear OLS in log/log space at "rst overstates the actual rate of productivity
improvement and then understates it. Ultimately (because of the terminal
plateau), linear OLS in log/log space can be expected to overstate the rate of
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Fig. 22. Plateauing, e!ects of s on z6 , s
z
, lM

T
, and slT.

productivity improvement. This is not surprising for smooth, many-recipe
landscapes with large n and small d. Because n is large, for each improvement the
expected reduction in the labor requirement is small. Because the landscape is
smooth, the probability of "nding an improvement on any given trial is relative-
ly high. The large recipe set implies that the stock of potential improvements is
being exhausted at a very slow rate. Hence the resulting productivity plot is
likely to be nearly linear in natural units. Therefore it will be strongly concave to
the origin in log/log space. This is in agreement with the results of our model and
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Fig. 23. Plateauing, e!ects of e on z6 and s
z
.

with observed experience curves. The data behind experience curves frequently
show curvature bias, usually positive (indicating a concave function), but some-
times negative (indicating a convex function). In the subsection above on the
e!ects of ¹ on p6 and s

p
, we also provide separate simulation evidence on

curvature and SFS.
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Fig. 24. Plateauing, e!ects of d on z6 and s
z
.

39Clearly more e$cient grids and pooling of data are possible. See Judd (1998), especially Chapter
9 on acceleration techniques for Monte Carlo experiments.

5.8. Comparative dynamics: OLS scoring

For the two parameter sets (focused and random),39 we regressed each of the
predictions of the model on the parameters of the model. We employed various
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Table 5
Prediction of p6 by OLS scoring from the focused parameter set

Summary

R R2 Adjusted R2 Std. error of the estimate

0.836 0.698 0.689 6.015016

Analysis of Variance

Sum of squares df Mean square F Sig.

Regression 13988.2 5 2797.635 22.325 0.000
Residual 6042.130 167 36.180
Total 20030.3 172

Coezcients

Coe$cient Std. error Std. coe$cient t Sig.

Constant 101.537 1.798 56.476 0.000
log n !1.22 0.276 !0.021 !0.443 0.000
log s !7.115 0.469 !0.756 !15.157 0.000
log e 3.132 0.361 0.397 8.672 0.000
log d 0.0343 0.353 0.049 0.970 0.333
log q !0.064 0.250 !0.011 !0.256 0.798

40Our (unreported) experiments also include: natural predictions regressed on natural para-
meters, and log predictions regressed on log parameters. We also experimented with interaction
terms for the parameters.

functional forms. The results are not very sensitive to the functional form. We
report here the regression results for cases in which the prediction in natural
units is regressed on log values of the parameters.40

Predicting p6 : In Tables 5 and 6, we summarize the results of OLS scoring for
prediction of p6 . The R2's are not very high. This is probably because the
functional form we are using is highly misspeci"ed. We saw by eyeball scoring
that the interaction e!ects of the parameters can be quite subtle and that the
e!ects of varying even a single parameter are not monotone. Nonetheless, the
t tests yield high levels of signi"cance for most of the parameters. The R2's and
the t tests are more favorable for the random set. This is probably because the
random set does not su!er from &Fig. 14 bias', i.e. (1) the data are more dispersed
for the random set and (2) the focused set conditions more on the interesting
small values for which the results tend to be non-monotone in the parameters.
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Table 6
Prediction of p6 by OLS scoring from the random parameter set

Summary

R R2 Adjusted R2 Std. error of the estimate

0.917 0.840 0.837 1.3847

Analysis of Variance

Sum of squares df Mean square F Sig.

Regression 2460.072 5 492.014 256.606 0.000
Residual 467.843 244 1.917
Total 2927.914 249

Coezcients

Coe$cient Std. error Std. coe$cient t Sig.

Constant 74.119 0.699 106.037 0.000
log n 2.118 0.090 0.620 23.586 0.000
log s !0.128 0.103 !0.033 !1.246 0.214
log e 2.341 0.125 0.484 18.750 0.000
log d 1.493 0.129 0.305 11.563 0.000
log q !0.127 0.123 !0.027 !1.037 0.301

Both OLS scorings predict that increasing either of the two cousin parameters
} e and d } will increase pN . From the focused parameter set, the prediction is that
increasing s decreases pN . The prediction from the random parameter set is the
same but at a lower level of signi"cance. From the random set, there is a weak
prediction that increasing q increases pN ; from the focused set, the coe$cient is
not signi"cant. This weak e!ect of q on pN is probably because of misspeci"cation
of the experience curve: as q is increased initial productivity improvements can
be so rapid that the terminal plateau is reached quickly. The estimated progress
ratio then gives a downward biased estimate of the &actual rate of productivity
improvement.'Another reason that the q e!ects might appear to be weaker than
expected is that our model of reporting and implementation of quality control
trials might not be the best one. For the focused parameter set, increasing the
parameter n decreases the prediction pN . For the random parameter set, increas-
ing n strongly increases pN . This can be explained by the fact that the random
parameter set contains bigger n's than does the focused parameter set; see Tables
3 and 4. Eyeball scoring strongly suggests that pN is not monotone in n. For
smaller n, pN is decreasing in n. For larger n, pN is increasing in n.
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Table 7
Prediction of s

p
by OLS scoring from the focused parameter set

Summary

R R2 Adjusted R2 Std. error of the estimate

0.740 0.547 0.536 2.193557

Analysis of variance

Sum of squares df Mean square F Sig.

Regression 977.192 4 244.298 50.772 0.000
Residual 808.364 168 4.812
Total 1785.557 172

Coezcients

Coe$cient Std. error Std. coe$cient t Sig.

Constant 2.656 0.637 4.168 0.000
log n !0.740 0.100 !0.417 !7.366 0.000
log s 1.403 0.171 0.499 8.201 0.000
log e !0.345 0.132 !0.146 !2.624 0.009
log d 0.219 0.128 0.104 1.709 0.089

Predicting s
p
: In Tables 7 and 8, we report the prediction of the standard

deviation s
p
. Increasing n reduces the predicted s

p
. Increasing s increases the

s
p

predicted from focused parameters. Increasing e decreases the predictions of
s
p
. The predicted e!ects of varying d di!er between the two parameter sets.

Increasing q decreases the prediction of s
p
.

Predicting zN : See Table 9. Increasing n increases the predicted mean improve-
ment percentage, zN , while increasing e or d decreases zN .

Predicting c6
2
: If c6

2
is negative, then the estimated quadratic experience curve is

a concave function in log/log space. See Table 10. Increasing n, s, or q decreases
predicted c6

2
and hence increases the curvature e!ect. Increasing e or d increases

the predicted c6
2

and hence decreases the curvature e!ect.

5.9. Matching observations

Our model is su$ciently rich to match the reported progress ratios from
estimated experience curves. One can do more. If one has data or priors on the
values of p6 , s6

p
, z6 , s

z
, c6

2
, s

c2
, or any of the other predictions for a particular plant,

"rm or industry producing a speci"c good, then one can search for parameters
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Table 8
Prediction of s

p
by OLS scoring from the random parameter set

Summary

R R2 Adjusted R2 Std. error of the estimate

0.831 0.691 0.685 0.5226

Analysis of variance

Sum of squares df Mean square F Sig.

Regression 149.101 5 29.820 109.186 0.000
Residual 66.640 244 0.273
Total 215.741 249

Coezcients

Coe$cient Std. error Std. coe$cient t Sig.

Constant 5.704 0.264 21.620 0.000
log n !0.722 0.034 !0.779 !21.313 0.000
log s !0.023 0.039 !0.022 !0.601 0.549
log e !0.137 0.047 !0.105 !2.915 0.004
log d !0.121 0.049 !0.091 !2.485 0.014
log q !0.103 0.046 !0.080 !2.215 0.028

n, s, e, d and q that predict the data. One might also have priors on some of the
parameters based on engineering considerations or (especially in the case of ¹)
market considerations. From this, one could come up with a best explanation of
the observed data. How well the model "ts observations and priors would
measure the usefulness of our theory of learning by doing.

The observed values of p6 (from actual "rms and industries) are likely
to be biased downward, since estimates of the progress ratio also pick up
the e!ects of increasing returns to scale in production and of the development
(the D of R&D) activity devoted to improvements in production e$-
ciencies. We have not done anything in our experiments to account for this
bias.

It should be straightforward to test the predictions of model in the following
way: (1) Take some learning curves for a particular industry. (2) Adjust the
reported statistics (such as p6 and s

p
) for the numbers of observations in each run.

(3) Then "nd in our set of predictions the parameter sets, for which the
predictions are near the observed statistics. This program is included in our
research agenda.

P. Auerswald et al. / Journal of Economic Dynamics & Control 24 (2000) 389}450 441



Table 9
Prediction of z6 by OLS scoring from the random parameter set

Summary

R R2 Adjusted R2 Std. error of the estimate

0.772 0.596 0.595 3.5315

Analysis of variance

Sum of squares df Mean square F Sig.

Regression 91718.6 4 22929.7 1838.589 0.000
Residual 62294.3 4995 12.471
Total 154013 4999

Coezcients

Coe$cient Std. error Std. coe$cient t Sig.

Constant !1.786 0.396 !4.511 0.000
log n 3.240 0.050 0.585 64.163 0.000
log s 0.213 0.059 0.033 3.630 0.549
log e !3.954 0.071 !0.504 !55.604 0.004
log d !2.221 0.074 !0.280 !30.163 0.000

5.10. Averaging runs

Averaging over production runs based on the same vector of parameters
tends to &clean the data' of (non-terminal) plateauing, without (as far as we can
tell) seriously a!ecting predictions like p6 and c6

2
. This is a useful &pre"lter' to be

used before eyeballing the data: the irregular realization of improvements
sometimes makes it di$cult to see the forest (slope and curvature of the plot) for
the trees (the particular realizations of plateauing).

6. Summary and conclusions

To account for the e!ects of technological evolution, macroeconomists rely
on models with inter"rm production externalities and non-conventional factors
of production (such as human capital and technological knowledge). In this
regard, macro has gone beyond its micro foundations. Our primary goal for this
paper is to suggest a general micro approach for modeling technological
evolution, viz. to provide an explicit description of the engineering recipe and
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Table 10
Prediction of c6

2
by OLS scoring from the random parameter set

Summary

R R2 Adjusted R2 Std. error of the estimate

0.602 0.362 0.361 0.0127

Analysis of variance

Sum of squares df Mean square F Sig.

Regression 0.457 5 0.0914 566.462 0.000
Residual 0.806 4994 0.000161
Total 1.262 4999

Coezcients

Coe$cient Std. error Std. coe$cient t Sig.

Constant !0.0071 0.001 !4.919 0.000
log n !0.0050 0.000 !0.314 !27.020 0.000
log s !0.00072 0.000 !0.040 !3.422 0.001
log e 0.0105 0.000 0.466 40.872 0.000
log d !0.00592 0.000 0.260 22.345 0.000
log q !0.0016 0.000 !0.072 !6.281 0.000

41Foley (1998) describes one non-production-function approach to modeling long-run technical
change.

then to model both the relationship of one recipe to another and the corre-
sponding input}output relationships. Doing this would allow one to build micro
models of research and development, technology transfer, learning by doing,
and so forth. Empirical justi"cation for this point of view can be found in the
widespread business use of engineering experience curves.

It might be useful to indicate three things that our approach is not: (1) The
recipes model is not a simple disaggregation of some macro model. Economists
"nd it useful to disaggregate, for example, &labor' into &skilled labor' and
&unskilled labor' for some particular problems. Disaggregation is an important
art, but in itself it does not require the introduction of recipes. (2) Our recipes
model goes beyond the work of Chenery (1949), Smith (1961), and others on
engineering production functions41 (and engineering cost functions). Chenery
and Smith use engineering information about currently existing blueprints to
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place restrictions on production functions before estimating their parameters. In
the recipes approach, blueprints for one production process are related to those
for other processes (including those for undiscovered processes). The Chenery
and Smith works sharpen our understanding of existing technology, but they do
not provide a su$cient basis for modeling technological evolution. (3) Stokey
(1988) and Boldrin and Levine (1997) analyze the introduction of new goods in
economies for which there are many available (i.e. known with certainty)
neoclassical production techniques. The problem for Stokey and Boldrin/Levine
is "nding the proper sequence in which these techniques are to be exploited. The
discovery of improved techniques from uncertain recipes is not treated in these
papers.

To make our recipes approach concrete, we apply it to modeling shop-#oor
learning by doing. Our guide for this has been the ideas to be found in the words
(the equations are pure macro) of Ken Arrow's (1962) seminal paper and the
words and some of the equations of Bob Solow's (1997) provocative Arrow
Lectures.

There is an impressive amount of empirical work on the engineering experi-
ence curve. Wright's law is that unit cost l

t
is related to>

t~1
, cumulated output,

by the power function l
t
"a(>

t~1
)~1@3, so that the progress ratio p is given by

p"2~1@3"79%. If we allow for a more general power law, we have

l
t
"a(>

t~1
)~b,

where b'0 and p"2~b. The progress ratio p is a decreasing function of the
exponent b, the learning coe$cient. Post-Wright empirical studies suggest that
observed progress ratios live in the range of about 60}95% with a mode of about
81}82%. The existing empirical literature reports not only mean progress ratios
but also their standard deviations.

When confronting observed data, the simple power law su!ers from two
serious types of speci"cation error: (1) plateauing and (2) curvature or SFS bias.
Plateauing is reduced by averaging (over "rms in an industry or plants in a "rm),
but the curvature and SFS are more persistent.

In our recipes model of learning by doing, we assume that production is of
a single output from a single input with constant returns to scale. We also
assume that the recipe space is "nite. This allows us to adapt the ("nite,
combinatorial) NK model for our purposes. There are six basic parameters in
our model of shop-#oor learning by doing: (1) n, the number of production
operations, (2) s, the number of possible instructions or settings for each
operation, (3) e, the externality parameter that gives the number of operations
whose settings a!ect the costs of one operation, (4) d, the maximum step size per
trial, (5) q, the number of trials made on the shop #oor per measured batch, and
(6) ¹, the length of the production run.

In Section 5, we provide the comparative dynamics for the learning-by-doing
model. The analytics are di$cult } especially since our major interest is in the
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42An innovation of our study is the prediction of observed standard deviations. This gives us
more predictions to match with the observed data. It is also in line with the interests of industrial
organization economists and others.

43See Conway and Schultz (1959) and Balo! (1971).

short term and the medium term } so computation is called for. The simplest
parameter to analyze is s. The e!ects of s are purely through its e!ect on the
number of recipes, sn. Increasing s increases the rate of productivity increase and
hence decreases p6 , the sample mean of the progress ratio, while slightly decreas-
ing s

p
, the standard deviation42 of the progress ratio.

Increasing n has two basic consequences. It increases the number of recipes, ns,
but it also decreases the e!ect of small-scale improvements on the overall produc-
tivity. The "rst e!ect tends to decrease p6 , while the second tends to increase p6 . In
fact, for small n the e!ect of increasing n is to decrease p6 , while for larger n the
e!ect is to increase p6 . The standard deviation, s

p
, is decreasing in n. Increasing

n decreases plateauing, the phenomenon of runs without improvements.
If e"1, we know that for ¹ very large, the global least-cost recipe will

eventually be chosen. We are, however, more interested in shorter term e!ects.
Increasing e, the externality parameter, increases the number of cost-relevant
recipes, nse. Increasing e increases the rate of experimentation. This e!ect is
similar to the e!ect of increasing s. Increasing e also makes the landscape more
rugged. The "rst two considerations tend to decrease p6 , while the third e!ect
tends to increase p6 . If the recipe space is small, then increasing e seems to
decrease p6 for small e. Otherwise, increasing e increases p6 . Increasing e decreases
the curvature misspeci"cation.

The average step size is an increasing function of d. Increasing d, because
taking bigger steps is like walking on a more rugged landscape, turns out to have
similar e!ects to increasing e } even though increasing d does not expand the set
of cost-relevant subrecipes.

Increasing q increases the number of trials per measured batch. Thus
q measures the speed of economic time relative to calendar time. This parameter
was included for two reasons. The "rst goal was to make the error process more
realistic: not every product is likely to have the same number of trials per
measured batch. The second was to allow us to easily generate runs with very
low p6 . In this second goal, we were only partly successful. Overall, increasing
q does tend to decrease p6 but the e!ect is not strong. In retrospect, we did not
study q carefully enough. More experiments are needed. More importantly,
modi"cations of the modeling of auditing/production timing are called for.

The parameter ¹, the length of the production run, is very important. It helps
us to measure the curvature bias. Because of the functional form misspeci"ca-
tion, it is predicted that p6 will be very dependent on ¹. This is observed in the
actual experience curve data43 and our simulations.
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44See, e.g., Clemhout and Wan (1970), Boldrin and Scheinkman (1988) and Young (1993).

45See also Jovanovic (1982), Jovanovic and Rob (1990), Jovanovic and MacDonald (1994) and
Jovanovic and Nyarko (1996).

46See, e.g., Dewey (1997).

Our model is su$ciently rich to give predictions for p6 in the range (60}95%)
suggested by Fig. 2, while also matching observations for the s

p
's. To do this, we

select parameters with relatively large n, and relatively large s, but with relatively
small e and relatively small d. If data were available on z, s

z
, c

2
, and s

c2
, we could

further test our model. Prior information on the parameters could also sharpen
these tests.

If we merely look at the distribution of predictions over either of the para-
meter sets (see Tables 3 and 4), we do not come close to matching the distribu-
tion of observed results (see Fig. 2). For example, the mean p6 from Table 3 is
90%, and the mean p6 from Table 4 is 92%. These are very slow compared to the
mode in Fig. 2 (81}82%) or to Wright's Law (79%). This should be no surprise.
The two parameter sets were meant to be inclusive, but not typical. Many
extreme values of the parameters are included in these sets for purposes of
sensitivity analysis.

How does our model compare to other models of learning by doing? Most of
the successors to Arrow work with models that rely heavily on some macroeco-
nomic production externality.44 Two papers, Muth (1986) and Jovanovic and
Nyarko (1995), contain microeconomic theories of technological evolution.45
The Jovanovic and Nyarko paper is a classic. Their "rm follows a purposive
economic strategy. Production decisions and learning decisions are fully ra-
tional. In their general formulation, Jovanovic and Nyarko allow for the
possibility of interactions between the current learning choice and the current
production choice, but in the worked-out model independence is assumed.
Hence one could say that the Jovanovic and Nyarko model is about learning
and doing rather than learning by doing.

We think that our work is more in the spirit of Arrow's (1962) original verbal
discussion } that is, in the spirit of John Dewey46 and the Gestalt philosophers,
for whom learning involves doing (in our case producing). (See also Solow (1997)
on Arrow.) The &cost of learning' for this School could be represented in our
model by the lack of short-run discipline in production. It would have been easy
for us to incorporate production retrogressions in our analysis to make our
model "t even better to this Dewey insight.

We are not wedded to myopic recipe selection. It would certainly be interest-
ing to extend our model of learning by doing to allow for both foresight
in selection of the reigning recipe(s) and some control by the "rm of the
rate and direction of experimentation. For the latter, there must be costs of
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47The parameter q could be thought of as the &Dewey parameter'. Increasing q } if possible } would
lead to more retrogressions (the cost) but would also lead to more experimentation (the gain).

experimenting. These might include the output losses from pilot-project retro-
gressions,47 the opportunity costs of sampling other recipes, and perhaps addi-
tional resource costs of experimenting with distant recipes.

Our model of learning by doing would become much more complicated (but
more realistic) if production were more general. More than one input, more than
one output, or non-constant returns to scale raise more urgently questions
about the economic purposiveness of "rms. Decisions of what technology to
adopt would then depend not only on the interconnections among the recipes and
among their associated technologies, but they would also depend on expectations
of future output prices, future factor prices, and future scales of production.
Adding more foresight would then be necessary. To analyze the more general
cases, we would have to go beyond this relatively simple combinatorial model.

Our current model works for one input, one output, constant returns cases for
which the focus is either the short term or the intermediate term. We believe that
something like our recipes approach will also be essential to all models of
technological evolution, but the modeling of recipes will have to be expanded to
apply to more generalized production and market conditions. For the analysis of
long-run aggregate productivity, the model must be expanded beyond the "nite
recipe space to allow for the possibility of continuing productivity improvements.

7. For further reading

Bahk and Gort, 1993
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