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TECHNOLOGICAL KNOWLEDGE AND ECONOMIC GROWTH

Karl Shell, Department of Economics, Massachusetts Institute of Technology, Cambridge,
United States of America
EMPIRICAL LITERATURE on the sources of technical knowledge with respect to its production

economic growth has convinced the contemporary
economist of the important role played by “tech-
nical progress” in the process of economic develop-
ment.! Only to have models of economic growth in
which such an important factor is treated as
exogenous is certainly unsatisfactory, and it was
because of this that the models of Kaldor and
particularly of Arrow were introduced.? Both these
models may be thought of as positing that the
production of new technical knowledge (invention)
and its transmission (innovation) are social by-
products of the production and adoption of new
capital goods.

While it is no doubt true that technical change
is related to gross investment both as a by-product
of capital goods production and as a vehicle for
embodying new techniques in new capital equip-
ment, it is also true that the rate of production of
technical knowledge can be increased by increasing
the allocation of economic resources explicitly
devoted to inventive activity. Elsewhere,® I have
treated models in which the level of technical
knowledge is increased by the explicit allocation
of economic resources to inventive activity. My
model is much like a heterogeneous capital-goods
model except that for the enterprise economy the
stock of technical knowledge enters as a pure
public good of production. Such a specification is
suggested by the very low cost of transmission of

! See R. W. Sorow, “Technical Change and the
Aggregate Production Function”, Review of Economics
and Statistics, Vol. 37, 1957; J. W. KENDRICK, Produc-
tivity Trends in the United States, Princeton, 1961; and
E. ¥. DexxisoN, The Sources of Growth in the United
States and the Alternatives Before Us, Supplementary Paper
ﬁ)%. 13, Committee for Economic Development, New York,

2.

* N. KALDOR, “A Model of Economic Growth”,
Economic Journal, Dec. 1957, pp. 591—624; and K. J.
Arrow, “The Economic Implications of Learning by
11)7%ing", Review of Economic Studies, June 1962, pp. 155 —

* K. SHELL, “Toward a Theory of Inventive Activity
and Capital Accumulation’, American Economic Review,
Vol. 56, May 1966, Pp. 62—69; and “A Model of Inven-
tive Activity and Capital Accumulation”, in K. SHELL
(ed.), Essays on the Theory of Optimal Economic Growth,
M.LT. Press, forthcoming. .
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cost.* For the enterprise economy, therefore, the
specification of the form of the production func-
tions which is consistent with the usual competitive
hypothesis is altogether different in the inventive
activity model from the consistent specification in
the ordinary heterogeneous capital-goods model.

As I see it, endogenous technical change models
of the heterogeneous capital-goods type represent
one of the promising first steps in this area. The
currently available models of this type, however,
suffer from two severe short-comings: (a) in none
of them does uncertainty enter in an [intrinsic
fashion; (b) the manner in which technical know-
ledge enters production functions is specified in
advance in these models, no economic choice being
left between say labour-saving or capital-saving
inventive activity.

There are probably two distinguishing quali-
ties of the commodity ‘“‘technical knowledge”. The
first is its lack of appropriability: it can be used
by many economic units without altering its char-
acter. It is this quality which makes social inter-
vention in the enterprise economy on behalf of
inventive activity so desirable. This quality of
technical knowledge and its implications for social
policy are stressed in my two papers just mentioned.
The second distinctive quality of technical know-
ledge is the riskiness of its production. This un-
certainty is treated in my papers in a way that
removes all the inherent difficulties by assuming
that, given factor allocations to the inventive
sector, the dispersion of aggregative benefits from
invention about its mean is zero, so that under
social planning no risk remains.

Recently there have been a number of con-
tributions to the literature of economic growth
employing a construct such as the invention pos-

¢ In a provocative unpublished paper, “A Theory of
Invention in the Firm”, W. D. NoRDHAUS has extended
the analysis to include the case in which, although *‘spill-
overs’ of technical information are present, the firm is
able to internalize some of the returns from inventive
activity.
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sibility set (or the innovation possibility set).5 In
these models the invention possibility set is given
at every instant of time and is independent of
economic variables. From feasible points in the
invention possibility set, firms or planners are free
to choose optimal combinations of capital-aug-
menting and labour-augmenting technical progress.

As a prologue to the theory of endogenous
technical change the next section deals with models
of stylized enterprise economies and planning
models in which there is exogenous technical
change. In section 2 I treat three different models
.of education and technological change, drawing
inspiration from the work of Uzawa, and Nelson
and Phelps. The first model of education specifies
that changes in labour-force efficiency are depen-
dent upon the fraction of the labour force engaged
in educational activity. The second model speci-
fies that changes in labour force efficiency are
dependent upon the gap between exogenously
determined “available technology” and “techno-
logy in practice” and upon the ‘“educational
attainment” of the society. These two views are
then integrated with the specification that changes
in educational attainment are dependent upon the
fraction of the labour force employed in the
educational sector.

In section 3 I question the rigid assumption
that technical change affects the production func-
tion in a pre-specified way that is not subject to
economic calculation. I examine a planning model
inspired by Samuelson and Nordhaus, in which the
bias of technical change is open to choice by the
planning authority. Certain turnpike properties are
exhibited. The difficulties inherent in extending
the analysis to enterprise economies are discussed.

1. GROWTH MODELS WITH EXOGENOUS TECHNICAL
CHANGE

In a classic paper Robert Solow® studied the
long-run dynamic behaviour of a simple economy
in which the current rate of production of homo-
geneous output Y (f) depends upon the current
stock of physical capital K (¢) and the current size
of the labour force L (t) inelastically offered for
employment,

Y(@O)=9¢[K @), L)) (L.1)

¢ See W. D. NorpHAUS, “The Optimal Rate and
Direction of Technical Change”, to appear in Essays on
the Theory of Optimal Economic Growth, op.cit.

* R. M. Sorow, “A Contribution to the Theory of
Economic Growth”, Quarterly Journal of Economics, Vol.
32, 1966, pp. 66—94 .

or in the particular case of Hicks-neutral technical
change

Y(@)=A4 (@) F[K @), L@®)]

where 4 (¢) may be thought of as a measure of
the current stock of technical knowledge. Solow
assumes that there is no depreciation in physical
capital, so that current output can be split into
current consumption C (f) plus current investment
Z (t), and that

Y()=C@®)+2Z(t)=C (t)+ K ().

If a constant fraction 0 <s <1 of output is saved
and invested, then the differential equation of
capital accumulation is

K(@)=sY (). (1.3)

Solow further assumes that the labour force grows
at the constant relative rate » so that
L(t)=nL (t). (1.4)

If lower-case letters denote quantities per worker
then the system (1.1)—(1.4) can be rewritten as

yO=40fkOI=4®OF k@), 1], (1.1%
yO)=c@)+z@)=c@)+k(t)+nk, (1.2%
k(t)=s4 () f [k (6)]—nk, (1.3%)
if F is positively homogeneous of degree one

(constant-returns-to-scale). First assuming the ab-

sence of technological change, 4 (t) =4 >@Q, con-
stant, it is easily shown that the Inada conditions

f(k)>0,f (k) >0, (k)<0,0<k <
f(0)=0,f(0)=cw
f(0)=c0, f' (0)=0

ensure that the economy (1.1)—(1.5) develops in
such a way as to tend to the unique long-run
balanced capital-labour ratio independent of initial
conditions. If capital depreciates at the given
exponential rate u, and gross saving is a constant
fraction of gross income,

k=sAf (k)—Ak, (1.6)

where A=p+ n. Or if net saving is a constant
fraction of net income then

k=sAf (k)— Ak,

where 1'=n/s+ u. Again (1.5) ensures that both
the system (1.6) and the system (1.7) are globally
stable in the sense of Lyapunov when s and 4 are
given quantities independent of time.

For the special case that the exogenously given
relative rate of increase of technical knowledge is
constant

(1.1)

(1.2)

(1.5)

(1.7)
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A.=9A,

and the production function given in (1.1°) is
Cobb-Douglas in capital and labour, so that

(1.8)

y=ek", 0<a<l, (1.9)

then long-run growth tends to a balanced capital
labour ratio measured in efficiency units (K/4 L)
when net (gross) saving is a fixed fraction of net
(gross) income.”

Next consider the problem of planning econom-
ic development in a centrally-directed economy
where Hicks-neutral technical change proceeds at
a constant given rate p. Assume that technology
and labour-force growth are as given in (1.1)—
(1.5) except that at every instant the savings
fraction s () ¢ [0, 1] is subject to control by the
planning board. As an exercise, I consider the
problem of maximizing the integral of discounted
per worker consumption over a given (finite or
infinite planning) period.®

The problem is to maximize the functional

T
feyear (1.10)

subject to the constraints:
kt)y=s(t)y (t)—Ak (2) (1.11)
y @)=ef (k (1) (1.12)
0<s(t) <1 (1.13)
k(0)=Fk, and k (T) 2kr (1.14)

where 6, A=n+u, k,, kr are given constants and
8 (t) is some measurable control (or policy) variable
to be chosen. Units of measurement have been
chosen such that 4 (0)=1 and therefore 4 (f)=
=e% k, is the historically given capital-labour
ratio, kr is the “target’ capital-labour ratio, while
T >0 is the length of the planning period.

The above problem is solved by employing
‘the “‘maximum principle” expounded in The
Mathematical Theory of Optimal Processes.® Intro-

7 This is natural because in the Cobb-Douglas case
Hicks-neutral technical change is also Harrod-neutral and
thus technical change can be thought of aglabour augment-
ing. See H. Gzawa, “Neutral Inventions and the Stability
of Growth Equilibrium’”, Review of Economic Studies,
Vol. 28, No. 2, pp. 117—124.

. ° This simple example is based upon the more com-
plicated analysis appearing in K. SHELL, “Optimal Pro-
grammes of Capital Accumulation for an Economy in
which there is Exogenous Technical Change”, in Essasy
on the Theory of Oplimal Economic Growth, op.cit.

. * L. S. PoNTRYAGIN, V. G. BorLrvanski, R. V.
GAMERILEDZE, and E. F. MiscHENKO, The Mathematical
Theoryof Optimal Processes, New York and London : Inter-
8cience Publishers, 1962. (Theorem 3 appears on p. 63.)

duce the Hamiltonian form
e~ {(1 —s) % f (k) +q [se f (k) — Ak]} =
=e~% {[(1 —s)+gs]e¥ f (k) —gAk}.
The application of theorem 3 of the work mentioned
yields the result that if a programme [k (t), s (¢);
0 <t <T]is optimal, then there exists a continuous
function ¢ (¢) such that
k(®)=s () e f (k () —1k ()
with initial condition k (0) =k,
¢W)=@+g)—[1—st)+
+q ) s®)ef (k(2)),
$ (t) maximizes
[1—s ()4 ¢ (t)s(t)] subject to 0 <s () <1
(1.17)

(1.15)

(1.16)

and s is a piece-wise continuous function of ¢,
e T g (T) [k (T)—kr]=0. (1.18)
For convenience set

y =max [(1 —8)+¢gs]=max (1, ¢).
0gssxl

Notice that ¢ (t) has the interpretation of the social
demand price of a unit of investment in terms of
currently foregone unit of consumption. Therefore,
differential equation (1.16) may be interpreted as
the requirement of perfect foresight. In a com-
petitive economy, for example, the change in the
price of a unit of capital should compensate a
rentier for loss due to depreciation and for “absti-
nence’”’, net of any rewards from the employment
of that unit of capital. Transversality condition
(1.18) states that at the target date either the target
requirement (1.14) must hold with equality or the
target demand price of investment must be zero.
Next it is required to study the singular solu-
tions of differential equations (1.15) and (1.16).
Notice that ¢ = 0 if and only if
= Yo (k)
- 8441

(1.19) reduces to

e f' (ke)=84+2

et f (ki)
S+

If the production functions satisfy (1.5) it is well

known that for any instant of time, equation (1.20)

is uniquely solvable in k:. Call the solution to

(1.20) k¥. Determination of k¥ is shown in figure I.

ki is the maximum sustainable capital-labour ratio
when technology is held fixed.

(1.19)

for case ¢ =1, and (1.20)

for case ¢ < 1. (1.21)
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ey “)

Figure I. Determination of ki and %

It is shown that for fixed ¢, equation (1.19)
describes a continuous curve in the (%, ¢) plane
with a kink at (k=k*, ¢=1). Differentiating (1.21)
yields ,

4q __ et f (k)
dk lg=0" S+ a

First we study the case of no technical change
(¢ =0). The appropriate phase diagram is given in
figure II. Condition (1.17) implies that for opti-
mality it is necessary that

<0, forg <1. (1.22)

q

0

4<0 P0 &0

0 &0

Figure I1. Phase diagram for case 0=0

s{g)=1 when ¢ >1
0<s(g) <1 when ¢g=1 (1.23)
s(g)=0 when ¢ <1

Then on any given trajectory not passing through
the point (k*, 1), k can be written as a continuous
function of ¢.1° In fact a trajectory [k (¢), g (t); ¢]
not passing through (k*, 1) is uniquely determined
by the specification of initial conditions [ (¢,),
g (to); Lol

Assume for purposes of exposition that the
initial capital-labour ratio is the balanced capital-
labour ratio k*, i.e. k (0)=/%*. Assume that the

K. SmELL «;"
&

planning period is infinite, 7= oo, and that the
target capital-labour ratio is left free. Then a pro-
gramme of capital accumulation satisfying the
necessary conditions is that of fixing ¢ (£)=1 for
0 <t <w and maintaining the balanced capital
labour ratio % (£) =k* for 0 <t < co.

For the case 8§ = 0, the above programme
Ak*
] .
(k__k , 8= 7 0oLt 500)

is what both Phelps and Robinson!! have dubbed
the golden rule of capital accumulation. For 8§+ 0,
this may be called the modified golden rule of
capital accumulation.!?

If k (0)5 k*, the planning board would assign
initial price g, such that the point (k,, ¢,) lies on
a trajectory that passes through (k*, 1). Let
0 <t* <o be the time required for such a pro-
gramme to achieve (k*, 1). Then the optimal pro-
gramme is

(k——-k*, §=-ji(,’:%~; t*stsoo).

The initial savings ratio is zero or one, depending
upon whether the initial capital-labour ratio is
greater or less than &*.

The analysis is easily modified to handle the
general case where % (T') 2k, =0 and 7 < . The

10 By assigning the value 8(q)=1, the RHS of dif-
ferential equations (1.15) and (1.18) are seen to be con-
tinuously differentiable functions of their arguments, k, g,
and ¢, on the domain defined by k>0,q =1, t> 0. Further,
by assigning the value s(q) =0, the RH S of (1.15) and
(1.16) are seen to be continuously differentiable functions
of k, g, and ¢ on the domain defined byk>0,¢<1,t>0.
Thus, when the control 3 (¢) is appropriately assigned, the
system (1.15) and (1.16) is shown to be trivially Lip-
schitzian over the respective domains of definition. By
classic theorems of ordinary differential equations (see
L. 8. PONTRYAGIN, Ordina Differential Equations, Read-
ing, Addison-Wesley Publishing Company, 1962, pp. 159—
167) we have that for a system satisfying (1.15)—(1.17)
and (1.23) that specification of the parameters (k(t,),
q(te); (4) uniquely determines the entire trajectory for
trajectories not passing through the locus of points defined
by (%, g, t) | k=k*(1), g=1,t>0|. In fact, the solutions
to the system (1.15)—(1.17) vary continuously when the
initial parameters (k (¢9)s q(to); t,) are allowed to vary (see
ibid., pp. 192 —-199).

11 E. PHELPS, “The Golden Rule of Accumulation: A
Fable for Growthmen”, American Economie Review, Vol.
51, 1961; and J. RoBINsoN, “A Neoclassical Theorem”,
Review of Economic Studies, Vol. 29, 1962.

12 Or perhaps, “the adulterated golden rule”. For
¢ =0 and T = oo, it is required that 8 > 0 in order that
the value of the definite integral (1.10) be finite for all
feasible programmes. For T < oo, the requirement that §
be positive is too strong. Even for the case with non-zero
technical change, if § >f'(k;)— A for >0, then k> ki .
T. Koopmans, On the Concept of Optimal Economic Growth,
Cowles Foundation (CF-30918), 1963, argues that if the
ethical principle that all men are to be treated equally
(independent of the size of their generation or its “‘tim-
ing”) is held, then 8 should be chosen equal to (—n) <0,
for the case of positive population increase. As long as
T < «, our analysis is congenial to this interpretation.
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initial point (k, q,) is chosen on a trajectory leading
to the point (k*, 1), if feasibility permits. The
Pontryagin programme

(k=kt, o=y 1+ <t <ee¥)

is followed, where t** is the time at which the
backward trajectory of the system (1.15)—(1.16)
starting at (k==%kz;t="1T) passes through (k= k*,
g=1). If, however, ¢ (t) <0 for all backward tra-
jectories to (k*, 1) starting at k5, then t** is defined
to be the time at which a backward trajectory
starting at time 7 and demand price ¢ (T)=0
intersects the point (&*, 1). Figure III illustrates
a programme satisfying Pontryagin’s necessary
conditions, '

&

________ ‘o
Ay o
R The Modified

Golden Rule
Tumpike

T
1
I
!
!
i
i
|
1
[

4

s gy e W

R

Figure I11. k(t), the Pontryagin path for case o =0

Important assumptions are implicit in the con-
struction of figure III. First, it is assumed that it
is feasible for the economy with initial endowment
k (0) =k, to achieve the target %, in the specified
time 7. Even stronger, figure II1 assumes that in
fact

T >t** >i* >0, (1.24)

If it is feasible to achieve the target during the
. planning period but (1.24) fails to hold, then the
Pontryagin path is the appropriate envelope of a
forward trajectory from (k,, g,) to (k*, 1) and the
backward trajectory from (kr,¢z) to (k*,1). In
the degenerate case in which only one feasible path
exists, the Pontryagin path is, of course, a pro-
gramme either of zero savings or of zero consump-
tion. Since optimal programmes do not permit the
demand price of investment to become negative, if
no trajectory is found with k (T') =k and ¢ (T') 20,
then the Pontryagin problem will yield ¢ (T)=0
~and k(T) >kp.

Some observations are in order here. The
¢ linearity of the objective function (1.10) implies
.+ & kink in the graph of the stationary solutions to
' z;ﬁquation (1.16). Extending the argument presented
“.

in footnote 9, the backward solutions to the point
(k*, 1) are unique. In general, however, ¢, will not
be uniquely determined by (k,, kz, T'). For the
degenerate Pontryagin paths that are everywhere
specialized to production of the same good, there
is a family of trajectories satisfying (1.15)—(1.18).
None the less, the Pontryagin programme of capital
accumulation

-~

k@);0<t<T)

is uniquely determined by (1.15)—(1.18), if a
feasible programme exists.

To summarize the Turnpike Property: For the
case of neoclassical production without technical
change, following the Pontryagin programme of
capital accumulation requires the planning board
to adopt the modified golden rule of capital accu-
mulation for all but a finite amount of time. As the
length of the planning period increases, the fraction
of time spent on a programme not satisfying the
modified golden rule approaches zero.!3

Next, examine the case with positive technical
progress (¢ >0). Notice that if p is non-zero, dif-
ferential equations (1.15) and (1.16) are non-
autonomous and thus the appropriate phase dia-
gram must be drawn in three-dimensional space,
(k, g,t). Time differentiation of equation (1.20)
yields

—o(d+2) e e
1 (ki)

e z bl
ey = 20 as 020 (1.25)

9

T~

Y
~

Figure IV. The manifold of solutions to ¢ =0 for case o> 0

18 If <[ (k) —7., then the Pontryagin programme
[k(t), 0 <t<T] is arbitrarily close to the ratio % for all
but a finite amount of time.
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- In general, stationary solutions to the differential
equation

q(t) =@+2) g (@) —ye® f (k)

are shown to lie on a manifold embedded in (£, g, £)
space. The manifold of solutions to ¢ = 0 is illus-
trated for ¢ positive in figure IV. The recollection
that, given ¢, equation (1.20) has the unique solu-
tion k¥, suggests a programme satisfying the
necessary conditions (1.15)—(1.18). Consider for
ease of exposition the case when the initial con-
dition is k (0) =k} and the target requirement is
k (T)=k7. A programme of capital accumulation
that follows the modified golden rule turnpike is
illustrated in figure V. This programme, though
clearly satisfying the necessary conditions (1.15),
(1.16) and (1.18), does not guarantee condition
(1.17). In other words, it is not guaranteed that a
programme of capital accumulation lying on the
turnpike of figure V will have for 0 <t <7, a
feasible savings ratio 0 < < 1.

.
& 0) "Toe Tumpike”

;\:)
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Figure V. The Turnpike when o> 0: the Poniryagin pro-
gramme of capital accumulation k (t) is shown by heavy curve

If ky=Fk%, equation (1.15) becomes

oy =8, 02t f (k; ) — Ak} (1.26)

The problem is to find ¢=s} such that when
ki=k¥, ki=k}.
Equating k, to k¥ yields

. —eB+Ae-el
S*GQ‘f (kr)—lkt*-—— f”(k;)
from (1.25) and (1.26). Or re-writing

o — Ak} _ e(d+4)
7 eetf(ky) — e2etf(ki)f (ki)

>0forp >0. (1.27)

This is the common-sense result that to achieve a
programme of positive capital accumulation re-
quires a positive savings fraction. However, (1.27)
does not guarantee that sf <1 for ¢ >0. To see
this, consider the case where the production func-

tion is linear-logarithmic in capital and labour,
yi=¢e% k. Let 0<a<1 so that a is capital’s
share of output in a competitive economy and the
production function is Cobb-Douglas. For the Cobb-
Douglas case

aeet 11/
kf = a+1] ’
and
: ¢ [ aect 1P
k= ’b"[a+1] ’
where b is defined by b=1—a. For the Cobb-

Douglas case, therefore,

am
R
where m is defined by m =A1b + . For the Cobb-
Douglas case s* is independent of time and greater
than zero, but whether s* is less than, equal to, or
greater than one depends upon the values of the
parameters a, o, 4, 5.14

s*

A

[
|
|
|
]
§
|
&
L4
‘l

Figure VI. Determination of % and ¥ for the Cobb-
Douglas case

This can be illustrated by figure VI. It is of
interest to know the sign of the expression
(I‘;t)3=1 —kr,

that is, to know when it is possible for the economy
to grow as fast as the turnpike path. For the Cobb-
Douglas case (1.28) reduces to

e‘?‘ k; -— [Ak; +Ag],

where A== —%—k?‘. Pigure VI illustrates the case
where 0 <s* <1. In that case setting expression

(1.28)

14 Consider the “familiar economy’ where a = 0.30,
A=n-+p=0.10, and ¢=0.03. If the planning board’s
rate of discount 8= 0.05, then &*=2/7<1. Hence, if
the ‘familiar economy” achieves the capital-labour
ratio k* (t) at time ¢, then it can maintain the turnpike
capital-labour ratio. It is not surprising that s* is indepen-
dent of ¢ for Cobb-Douglas functions. Since technical
change is labour-augmenting in this case, to remain on the
turnpike it is required that the capital-labour ratio
measured in efficiency units be held constant.
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(1.28) equal to zero and holding ¢ fixed yields an
equation with exactly two positive solutions %, and
ki If k <k, the maximum (current!) growth rate
for the economy is less than k¥.

It is important to establish that if &, < k* (0),
then 0 <¢* < . For the special Cobb-Douglas case
with 0 <s* <1, t* can be calculated and shown to
be finite. For the special case, (1.15) is integrated
to yield

kmeit{ky 20y be e}, (1.20)
when k,>0. When k, <k* (0), t* is the root to
the equation (k),.; =k*. That is, solve

b ~-apt__ [ B a {
[m - kg]e “[R— a+1]°°

to yield

mk

1
t* = —;nl—log [—1_—::—} » when ko X k* (0). (1.30)

Since (1 — s*) is assumed to be positive, t* will be
real if and only if

T

e <L
But #* will be non-negative if and only if

mk}

(1.31)

y - Ss* <L
(1.31) can be re-written as
a ]
ky < [m] —k* (0). (1.32)

Since the logarithm is a single-valued function,
(1.32) says that t* =0 when k,=k* (0) and that
if ko < k* (0), then 0 <¢* < = is the unique solution
to (1.30). Of course, if ky>k* (0), (1.30) has no
non-negative solutions.

Returning to the case of general neoclassical
production, an example of & Pontryagin programme
of capital accumulation is presented in figure V. In
drawing this figure it is implicitly assumed that
0 <t* <t** <T and therefore that s* (f) <1 for
t* <t <t**. It is further assumed that § (7') =0
when % (T)=kr.

The general case where s* changes with time
presents a sophisticated mathematical difficulty. If
the number of switches from s* <1 to s* >1 and
vice versa is sufficiently large it may be impossible
to find a piece-wise continuous control & (¢) satisfy-
ing (1.15)—(1.18). If no such control exists, then
no maximum to (1.10) exists.1®

18 If the class of admissible controls {0<s (t) < 1;
0Lt< T is restricted to be piece-wise continuous, then
a maximum to (1.10) exists if and only if the number of
such switches in [0, T'] is finite. Therefore if s* is an analy-
tic function of ¢, then a maximum to (1.10) exists.

In the previous sections programmes satisfying
necessary conditions (1.15)—(1.18) are referred to
as Pontryagin programmes. It remains to show
that the necessary conditions are also sufficient,
and that such programmes are indeed optimal.1¢

Let {¢ (¢), (1), k (1), G (1), .. .} be a programme
satisfying conditions (1.15)—(1.18). Let {c (2), z (¢),
k(t), q (t), ...} be any feasible programme, i.e. any
programme satisfying (1.11)—(1.14). It is required
to show

T
[@E—c)etdt 0. (1.33)
0
The LHS of (1.33) can be rewritten in the form
T

fe“"dt {€—e)+
+7[(e® f (B) —2—C) — (e* f(k)—2z—¢)]+
+G[E— Ak — B — (e — 2k — B},

which reduces to
T

fo¥d{(1—%) G—c)+@—7) E—2)
0

et [f (B) — f (k)] +§ [4 (k—F) + (k — B)]).
(1.34)

Notice that
(1—9)(c—c¢)=0 and (§—7) (2—2) 20.
Therefore (1.34) is not less than the following ex-
pression
T - -
Jer at {Feet [f B)—f )]+ [2 (b —F) +
0
+ (k—E)]}. (1.35)
But since f (-) is a concave function, (1.35) is not
smaller than

T
Jedat {Feet [(h—k) 1 (B)]+

+3 A (k—B)+ (b —B)J}.
By collecting terms the expression above yields

T . T
f?ie““(lé —k)dt +fe‘°’ dt (k —k) {Feetf’ (k) —GA).
’ ’ (1.36)

16 It is essential to impose some measurability require-
ment I;Pon the set of admissible controls |0<s (1)<,
0Lt T, If, as implied by (1.17), attention is restricted
to those controls which are piece-wise continuous, then
integration performed in (1.10) and (1.33)—(1.38) is to
be interpreted in the sense of Stieltjes. On the other hand,
if attention is restricted to Lebesgue measurable controls,
then the integration in (1.10) and (1.33)—(1.38) is to be
interpreted in the sense of Lebesgue.
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Integrating the first term in (1.36) by parts yields
7(T) e {k (T) — & (T)} — T, {k (0) — k(0)} —

T
—f(k—i) (—37) e % dt. (1.37)

Transversality condition (1.18) says that the first
term in (1.37) is non-negative. Since every feasible
path must satisfy the given initial condition k,,
the second term in (1.37) is identically zero. Hence

T . T .
Jae ¥ (k—k)ydt = — [(k—F) (T —37) e~ dt.
(1] (V]

(1.38)
Hence (1.36) is not smaller than
T

[edasl(E—k) {7 eetf'(B)— 4T} + (F— k) (T— 30)]=

0 T
= [e=ddt (k—k) {T— (3 + )T +7ef' ()}

which by (1.16) and (1.17) is identically zero. Hence
optimality requirement (1.33) is established. In fact,
if k% on some interval then inequation (1.33) is
strict.

2. MODELS OF ECONOMIC GROWTH AND EDUCATION

In the previous section some of the simplest
descriptive and planning models of economic growth
with exogenous technical change have been treated.
The shortcoming of such models is that one of
the quantitatively most important ingredients of
growth is left unexplained and thus is ostensibly
beyond the control of policy makers. In this section
I shall critically examine two models of growth in
which technical progress is the endogenous result
of improving labour force quality.

The first model is that of Hirofumi Uzawa.l?
He postulates that current productive output Y ()
depends upon the current level of the capital stock
K (t), the current allocation of workers to produc-
tion Lp (t), and the current efficiency A (f) of the
labour force:

Y (@)=F[K(t), 4 () Lr (1))

It is merely for convenience of analysis that the
improvements in labour quality appear in (2.1) in
a (Harrod neutral) labour-augmenting manner.

(2.1)

17 H. Uzawa, “Optimal Technical Change in an
Aggregative Model of Economic Growth’, International
Economic Review, Vol. 8, No. 1, Jan. 1965, pp. 18—31.
Although the formal model discussed here is that of Uzawa,
the economic interpretations of it are not necessarily his.

There is, of course, no a priori reason to identify
improvements in labour quality due to education
with labour augmenting technical progress.

Next assume that improvement in labour force
quality depends upon the ratio of educators to the
labour force

AJA=g (Lg/L), (2.2)

where Lg is the number of educatorsand L > Lp+
+ Lg is the size of the total labour force. It is
assumed that the higher the proportion of the
labour force employed in education the higher the
improvement in labour force efficiency.

¢'(Le|L) =0, ¢"' (Le/L) <0for (Lg/L)e[0,1]. (2.3)

as before
' - L.=nL, l
Z4+C=Y, (2.4)
l K=Z-—-,uK. [

The planning board inherits at time zero stocks
K (0), L (0), and A4 (0). As before define:

y=Y|L,k=K|L,u=Lp|L, s=12]Y.

The optimal accumulation problem (over the in-
finite planning period) is to maximize the functional

(2.5)

[(1—s) yo~%dt, where § >0, (2.6)
0
subject to:
k=sy — Ak, (2.7)
A=Adg (1 —u), (2.8)
k

y=Auf(g5), (2.9)
se[0,1, ue [0, 1], (2.10)

where 8, A=n+pu, &k (0)= (K (0)/L (0)) are given
constants and % and s are piece-wise continuous
controllers.

The Hamiltonian for this problem is

k k
e‘“{(l —8)Auf (717) +4q [sAuf(H)—).k] +
| odp(—u).
Thus the optimal programme must be such that

i=6—9) v—yult(45) — o=l (25) @12)

(2.11)

y =max (1, g), (2.13)
lim ge~% = 0 ==lim ve™, (2.14)
{+= t>»

Uzawa shows that (2.7) —(2.13) imply that the
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unique optimal trajectory tends to the balanced
state given by the starred variables which solve:

@ (1 —u*)+u*e’ (1—u*)=3,
r(5)=3+4

; (:_:) —Lr ({;) =v*g’ (1—u*), (2.15)

=it (l—u¥),

Now that the formal educational planning
model has been examined, let us re-examine its
basic premises. Apart from the usual difficulties
that come from the one sector production for-
mulation (2.1) and the “vulgar” maximand (2.6)
the Uzawa model above does not allow for the
substitution of capital for labour in the education
sector. Perhaps this is appropriate for planning in
the context of underdeveloped societies; it is cer-
tainly a very limiting assumption for planning
educational effort in the so-called advanced econo-
mies. Further, the above formulation assumes that
although transmission of knowledge (education) to
the labour force is costly, there is no way available
to produce new technological knowledge.18

The second model of education and economic
growth that I will treat in this section is due to
Nelson and Phelps.'? In their model the role of
education is thought to be primarily that of facili-
tating the flow of technological information. My
interpretation of education in the Uzawa model is
the process of transmitting already known tech-
nological information to the labour force. The
distinction between this view and that of Nelson-

Phelps is rather subtle. Nelson-Phelps thinks of

education as the process of training the productive
actors in the economy to receive and “‘decode’ the
technological information that is being transmitted
by other sectors in the economy.

In the Nelson-Phelps model production is
given as in (2.1) except that the entire labour
force is engaged in production, ie. Lp=L, or

Y=F (K, AL). (2.1%)

18 Production of new technological knowledge in
enterprise and planned economies is the theme of two
bapers by the present author, K. SHELL, ‘‘Toward a Theory
of Inventive Activity and Capital Accumulation”, Ameri-
oan Economic Review, May 1966, pp. 62— 69; “A Model of

nventive Activity and Capital Accumulation”, Essays on
the Theory of Optimal Economic Growth, op. cit.

'* R. R. NELsON and E. 8. PrELPS, “Investment in

Huma_ns, Technological Diffusion and Economic Growth”,
Mmerican Economic Review, May 1966, pp. 69—175.

The notion of the theoretical level of technology
at time, R (t), plays an important role in the model.
If all “best practice” technological knowledge were
available to all economic agents then R = 4. When
this is not the case 4 <R.

In its most interesting formulation the
Nelson-Phelps model has

A=(R—A)y (),

where % is a measure of the educational attainment
of society and y (0) =0, ¢’ (h) >0 for A >0. Accord-
ing to hypothesis (2.16) the rate of increase of the
technology in practice is an increasing function of
educational attainment and is proportional to the
“gap” (R —4). .

Following the Schumpeterian hypothesis that
inventions do not depend upon other economic
variables it can be assumed that R grows at the
constant relative rate e >0,

(2.16)

If b is a positive constant, then the system (2.1%),
(2.16) and (2.17) has the solution

A= (A., — Ro) eVt Y- Ryed. (2.18)

.
y+e
Therefore the long-run equilibrium path of techno-
logy in practice A* (f) is given by

__ v (R) ]

4 0) = (Sl 4) Boo

so that the gap between 4 and R tends to a long-
run constant for constant A.

In the Nelson-Phelps model not only is “tech-
nical progressiveness of the economy” (the time
path of R) left outside the model but (even more
important) the determination of the level of tech-
nical education A (or its time path) is left as a
datum.?® In what follows I construct an educa-
tional planning model that requires scarce resour-
ces to be devoted to the educational sector in
order to increase educational attainment 4. The
model may be thought of as a synthesis of the
Nelson-Phelps and the Uzawa models.

(2.19)

Assume that productive output?! per worker
can be written as

y=4uf(Z),

where u ¢ [0, 1] is the fraction of the labour force
to be employed in production, 4 is the “digested”

(2.20)

30 11_1 an unpublished Cowles Foundation discussion
paper Phelps solves for the golden rule level of educational
attainment. ‘

21 Assuming, of course, that there is no curvature
to the production possibility frontier in consumption-
investment space.
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stock of technical knowledge, and z is the capital-
labour ratio in labour efficiency units. Assume that
labour force growth is zero so that we can choose
units such that L=1.

Assume further that increase in the educational
attainment of the labour force is an increasing
function of the fraction of the labour force engaged
in education.

h=g [(1—u) L]

with ¢'>0, ¢’ <0, and ¢ (0)<0. Capital accumu-
lation follows

K =sF (K, AuL)— uK,

(2.21)

(2.22)

where x>0. The law (2.16) governing the growth
of technology in practice can be rewritten as

ifi— = [—R—Z—‘i] v (h).

Suppose that the planning board desires to
maximize the functional

(2.23)

jU [(1 —g) Auf ({-)] o= dt. (2.24)
0

(2.24) is merely the discounted integral of utility
of per capita consumption, since z is defined by
z=K|AL. 8>0 is the planners’ subjective rate of
time discount. Suppose further that U’>0, U" <0,
and U’ [0]= o so that consumption will always
be positive along an optimal programme. It is
convenient to consider the Hamiltonian H defined

by
Hed — U[(1_s)Auf(§)]+ q{sAuf(%)_yk}+
+oly(h) (Rye®* —A)} +wp [(1—u)]. (2.25)

Choosing utility as the numéraire, q is the social
demand price of investment, v is the social demand
price of technology in practice, and w is the demand
price of educational attainment as measured by k.
H is therefore the present social value of net nation-
al product at time ¢. Maximization of GNP with
respect to the controllers s (t) £ [0, 1] and u (t) ¢
[0,.1] yields

U’ 2 q, with equality when s> 0, (2.26)

and

U’ =z wyp, with equality when u<1.  (2.27)

A programme of development maximizes the
integral (2.24) subject to the technological con-
straints (2.4), (2.20)—(2.23) if there exist continuous
prices g (¢), v (t) and w (t) such that

Ci=G+me—r () (2.28)

i:=(8+1p)v—u{f(%)—%f’(—z-)}-U' (2.29)
w=3dw—uvy’ (k) [R—A4] (2.30)

while (2.4), (2.20)—(2.23), and (2.26)—(2.27) bold.

Condition (2.26) says that when investment in
physical capital is positive, the marginal utility
of consumption must equal the social demand price
for investment. Condition (2.27) says that when
educational effort is positive, the marginal utility
of consumption must be equal to the social demand
valuation of the marginal contribution to increase
in educational attainment due to added educational
effort.

Differential equation (2.28) says that the de-
mand valuation of physical capital must change
in a way 8o as just to compensate for losses due
to depreciating the ‘“waiting” net of the social
demand value of physical capital’s marginal prod-
uct. Differential equation (2.29) says that the
demand valuation of technical knowledge in prac-
tice must change so as just to compensate for losses
due to narrowing the gap between available tech-
nology and technology in practice plus “‘waiting”
net of the value of the marginal product of available
technical knowledge. The path of the shadow valu-
ation v () is inconsequential in the sense that all
allocation decisions are independent of the value
assigned to v (t). This is because, given &, R, and
A, the value of A is uniquely determined.

On the other hand, as evidenced by condition
(2.27), w (t) plays an essential role in allocation.
Differential equation (2.30) says that the social
demand valuation of education attainment must
change in order to just compensate for “waiting”
less the value of the marginal contribution to
increasing technological knowledge in practice.

To the above system we must append the
boundary conditions
z (0) =14, B (0)=Rq, A (0)=4,, b (0)=h, (2.31)
That is, that the initial values of stock variables
are given to the planning board. In addition we

must append the necessary terminal transversality
conditions

lim ge~¥ = lim ve™% = lim we™% = 0.

t>=> t>= tr=
That is, we require for optimality that the present
value of all stocks tend to zero.

Next we observe that the necessary system
of differential equations possesses a unique sta-
tionary solution provided production satisfies the
Inada conditions.

f(z)>0, f (x)>0, [ () <0 for 0<z <

f(0)=0, f (0)=ro,
f(0)=o0 f (0)=0.

(2.32)
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Remembering that L =1, let u! be the unique
stationary to (2.21), i.e.
p(1—ut)=0. (2.33)

For u=u' there is one and only one value x that
yields a stationary to (2.28) with U’=gq. Define
z' by
,({ xt
f)=3+n

Given u' and z', then k' is the unique value for
which (2.29) is stationary when U’ =v,

e e
Again for g=v=w="U’, and given z', 4!, and

k', we can solve for [R— A]! as the unique sta-
tionary to (2.30), i.e.

(2.34)

(2.35)

[R—A]' = # >0. (2.36)

Thus for the above economy the optimal
trajectory is such that it tends to the capital-
labour ratio z' (in efficiency units) independent of
initial endowments. In long-run optimal growth
the gap [R — A] between the theoretical technology
and the available technology remains constant
while the capital-labour ratio in natural units
declines.

3. THEORIES OF THE INDUCED BIAS OF
TECHNOLOGICAL CHANGE

In section 1, naive models of Hicks-neutral
exogenous technological change were treated, and
in section 2, models of education in which the in-
duced technological change was specified to be
labour-augmenting (and thus Harrod-neutral).22
I have posited elsewhere?* that technological
change induced by inventive activity is of the
Hicks-neutral form.

This specification of how the volume of in-
ventions, the education of labour, or the learning-
by-doing of entrepreneurs affects production func-

# The main reason that certain specifications of the
bias (or neutrality) of technological change are made is
for their convenience in modelling. There 18, for example,
no a priori reason to expect that the technological progress
resulting from increased education is labour augmenting.
This may be the case, but it may also not be the case.
Of course, if labour comes in ‘‘vintages” it may be natural
to specify that educationally induced technological change
is labour embodied.

3 K. SHELL, “Towards a Theory of Inventive Activ-
ity and Capital Accumulation”, American Economic
Review, May 1966, pp. 62—69, and K. SHELL, “A Model
of Inventive Activity and Capital Accumulation” in K.
SHELL (ed.), Essays on the Theory of Optimal Economic
Growth, op. cit.

tions is a rigid carry-over from capital theory.
Certainly if there is an economic choice as to how
much technological change a society should seek,
there must be an economic choice amongst dif-
ferent types of technological change. A planner or
an entrepreneur must be faced with a choice be-
tween ‘“labour-saving” and ‘‘capital-saving” tech-
nological change.?* This choice must be crucial
both in explaining the direction of progress in
enterprise economies and in planning research
and development, educational policy, etc. in cen-
trally directed economies.

Recently there have been a number of contri-
butions to the theory of economic growth that are
addressed to this point.?s Underlying these models
is a construction like the invention possibility
frontier (IPF). If output is given by

Y =F (BK, AL) (3.1)

then society (or, as some authors have claimed,
the entrepreneurs) faces an IPF characterized by

g (.) where
2_,(4) o

with g’<0 and g'’ <0. This means that between
labour-augmenting and capital-augmenting tech-
nical change a trade-off exists independent of
other economic variables. In particular it is assumed
that the rate of technical progress is independent
of the economic resources devoted to invention
and education. As before,

K=sY —uK (3.3)
with #>-0. Define the ratios:
y="Y|L,
k=K|L, (3.4)
x=BK/[AL.
Then (3.1) reduces to
y=Af () (8.5)

2¢ Such a choice between “‘labour-saving” and ‘‘cap-
ital-saving’’ change is crucial to the theories due to Hicks
and IFellner of innovation in enterprise economies (J. R.
Hicks, The Theory of Wages, Macmillan, 1932 [Ch. 6];
W. J. FELLNER, “Two Propositions in the Theory of
Induced Innovations”, Economic Journal, Vol. 71, June
1961).

25 See C. KENNEDY, “Induced Bias in Innovation and
the Theory of Distribution”, Economic Journal, Sept. 1964 ;
P.A.SAMUELSON, “A Theory of Induced Innovation along
Kennedy-Weizsicker Lines’, Review of Economics and Sta-
tistics, Vol. 47, No. 4, Nov. 1965; E. M. DrRANDAKIS and E.
S. PHELPS, ‘A Model of Induced Invention, Growth and
Distribution”, Cowles Foundation Discussion Paper No.
186; W. D. NorDHATUS, ‘“The Optimal Rate and Direction
of Technological Change’, in K. SHELL (ed.), Essays on the
Theory of Optimal Economic Growth, op. cit. The treatment
that follows has benefited from Nordhaus’ paper and dis-
cussions with him.
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and (3.3) reduces to

k=sAf () — 2k (3.6)

where A= u -+ n, where n = ilL is the relative rate
of growth of the labour force.

In treating such a model for the representative
firm in a competitive economy, one is skating on
thin ice. In the enterprise economy it seems that
the most important feature of technical knowledge
as a commodity is its inexpensive re-use. There-
fore, in treating enterprise economies the fact has
to be faced that most of the firm’s technical know-
ledge will be “imported” at typically very low
cost.

The planning problem is, however, much easier
to specify. Assume that it is desired to maximize
a functional of the form

[U {1 —9) 4f (m)] =% at (3.7)

where 6>0 and U’'>0, U"” <0, U’ (0)=. That
is, it is desired to maximize the discounted integral
of utilities of per capita consumption.

In order to apply the maximum principle,
construct the Hamiltonian H which is defined by

Hed=1U [(1 — 5 Af (-"Aﬁ)l +q{sAf(l‘z’i)—zk} +
+vettg (B) B+wpA (3.8)

where
p=AlA. (3.9)

If a feasible programme maximizes (3.7) then
there must exist continuous prices ¢ (¢), v (¢), and
w (¢) such that:

¢=@+44)p,—Bf (x) U (3.10)

b= (8—z—g)v—ke %} (x) U’ (3.11)

w=Q@—-p)w—{f @) —2f (@)} U, (3.12)
where

U’ [(l—s)Af(’iTB)] >q (3.13)

with equality when s>0. Following Nordhaus we
introduce the shadow price of 4 in the form
ve* =¥ Maximization of GNP (3.8) implies that

vg’ (B) Be*' +wA =0. (3.14)

It is further required that the system satisfy
the boundary conditions:

k (0)=k,, B (0)=B,, A4 (0)=4,

of historically given stocks and the appropriate
transversality conditions

lim ge™¥ =lim e ¢y () =lim ™ w (t) = 0. (3.16)
o> t—>»

[ B

(3.15)

If we indicate the stationary value of z (etc.)
by x° (etc.) then stationaries are found by solving

1 —af

g B) = — >, (3.17)
BOf (%) =544, (3.18)
g =z, (3.19)
80 = (ii;)ao (3.20)
where a° is the equilibrium share of capital
o_ 2f ()
«’= —rg (3.21)
If the elasticity of substitution
_—f—=f]
M7 T

is less than unity and if 8>z then a (forever)
stationary programme is seen to satisfy all neces-
sary and feasibility conditions.

In concluding this section, some comments
are in order. We have sketched out some basic
properties of the planner’s optimal programme of
capital accumulation and choice of the bias of
technical change. We are thus left with only a
partial analysis, since we have not investigated the
possibility of simultaneous acceleration of tech-
nological progress by way of devoting economic
resources to inventive activity. It is toward such
an integration that future research in this area
should proceed.
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