Lecture 2

• Time (Intertemporal economics)
 • Future markets
 • Money markets & spot markets

• Uncertainty
 • Contingent claims markets
 • “Arrow-Debreu”
 • Securities Markets & Spot Markets
 • Arrow

• Reference
 • Arrow Paper in RES
 • Translated from CNRS
 • Translated from mimeo
Future Markets

- Time, \(t = 1, 2 \)
- Commodity \(l = 1 \) per period
- \(x_h^t > 0, \omega_h^t > 0 \) for \(t = 1, 2 \); \(h = 1, \ldots, n \)
- \(p_t \) price of commodity at time 1 to be delivered at time \(t \)
- Present prices
 - \(p^1 = 1 \)
 - \(p^2 = \frac{1}{1+r} = \frac{1}{R} \)
Futures Markets

\[p^1 x_h^1 + p^2 x_h^2 = p^1 \omega_h^1 + p^2 \omega_h^2 \]

\[p^1 (x_h^1 - \omega_h^1) + p^2 (x_h^2 - \omega_h^2) = 0 \]

\[z_h^1 + \left(\frac{1}{1 + r} \right) z_h^2 = 0 \]

\[h = 1, \ldots, n \]

\[\sum_{h=1}^{n} z_h^t = 0 \quad t = 1, 2 \]

- Expectations are not up front because all trading is at time 1
- No re-trading at time \(t \)
 - By assumption
 or
 - By perfect foresight
• Futures market for commodities is closed
• Saving through lending money
• Dis-saving is through borrowing money
• Spot markets meet in $t = 1$ and $t = 2$
• Reasons money market is not “perfect”
 • DSGE (RBC)
 • DSGE with borrowing constraints
• Remarks on RCK
Inside Money

- AX traveler checks
- Here extended
- Isomorphic to Arrow article
- Irving Fisher
• Holdings of inside money
 • Purchase of inside money
 money = m^t_h \quad t = 1, 2; h = 1, \ldots, n
 • \sum_{h=1}^{n} m^t_h = 0 \quad t = 1, 2

• Outside money is created by the government and the banking system

• Present price of money
 \(p^{mt} \geq 0 \quad t = 1, 2 \)
Monetary Equilibrium

• Consumer Problem
 \[
 \max \quad V_h(x^1_h, x^2_h)
 \]
 subject to
 \[
 x^1_h + p^m_1 m^1_h = \omega^1_h
 \]
 \[
 p^2 x^2_h + p^m_2 m^2_h = p^2 \omega^2_h
 \]
 \[
 m^1_h + m^2_h = 0
 \]
 for \(h = 1, 2 \)

• Special Case

 • \(V_h(x^1_h, x^2_h) = U(x^1_h) + \beta U(x^2_h) \)

• Perfect Foresight about \(p^2 > 0 \) and \(p^m_2 > 0 \)

• Materials Balance
 \[
 \sum_h x^t_h = \sum_h \omega^t_h, \\
 \sum_{h=1}^t m^t_h = 0 \quad \text{for} \quad t = 1, 2
 \]

• Solve for \(p^2, p^m_1, \) and \(p^m_2 \)
Monetary Equilibrium (continued)

• Rewriting constraints
 • $z^1_h = -p^{m1}m^1_h$
 • $p^2 z^1_h = p^{m2}m^1_h$

• $z^1_h + p^2 z^1_h = (p^{m2} - p^{m1})m^1_h$

• Hence, $p^{m2} = p^{m1} = p^m \geq 0$

• Equilibrium allocation $x_h \in \mathbb{R}^{2n}_+$
is the same as for Future Market if $p^m > 0$
Uncertainty (isomorphic to intertemporal)

• See Arrow article
• 2 states of nature $s = \alpha, \beta$
• $h = 1, \ldots, n$ consumers
• Contingent commodity $x_h(s) > 0$
delivered only in state s
• Contingent endowments $\omega_h(s) > 0$
• Preferences
 $V_h(x_h(\alpha), x_h(\beta))$
 $= \pi(\alpha)U_h(x_h(\alpha)) + \pi(\beta)U_h(x_h(\beta))$
Contingent Claims (continued)

• Consumer Problem

\[\max \pi(\alpha)U_h(x_h(\alpha)) + (1 - \pi(\alpha))U_h(x_h(\beta)) \]

Subject to

\[p(\alpha)x_h(\alpha) + p(\beta)x_h(\beta) = p(\alpha)x_h(\alpha) + p(\beta)\omega_h(\beta) \]

Or

\[p(\alpha)z_h(\alpha) + p(\beta)z(\beta) = 0 \]

Find \((p(\alpha), p(\beta))\) such that

• CP determines \(x_h(\alpha), x_h(\beta)\)

and materials balance

• \(\sum_h x_h(s) = \sum_h \omega_h(s) \text{ for } s = \alpha, \beta\)
• \(b_h(s) \) is the quantity bought of security \(s \)
• Security \(s \) pays 1 unit of account in state \(s \); otherwise, nothing
• \(p_b(s) \) is the price of security \(s \)
• \(p_b(\alpha) b_h(\alpha) + p_b(\beta) b_h(\beta) = 0 \)
• Purchase of security is financed by sale of other security (not necessary)
Arrow Securities (continued)

- CP

\[
\max \quad \pi(\alpha)U_h(x_h(\alpha)) + (1 - \pi(\alpha))U_h(x_h(\beta)) \quad \text{s.t.}
\]

1) \(p(\alpha)x_h(\alpha) = p(\alpha)\omega_h(\alpha) + b_h(\alpha) \)
2) \(p(\beta)x_h(\beta) = p(\beta)\omega_h(\beta) + b_h(\beta) \)
3) \(p_b(\alpha)b_h(\alpha) + p_b(\beta)b_h(\beta) = 0 \)

- Multiply (1) by \(p_b(\alpha) \) and (2) by \(p_b(\beta) \)

1) \(p_b(\alpha)p(\alpha)z_h(\alpha) = p_b(\alpha)b_h(\alpha) \)
2) \(p_b(\beta)p(\beta)z_h(\beta) = p_b(\beta)b_h(\beta) \)

But by 3) we have
\[
\hat{p}(\alpha)z_h(\alpha) + \hat{p}(\beta)z_h(\beta) = 0
\]
Where \(p_b(s)p(s) = \hat{p}(s) \) for \(s = \alpha, \beta \)
Arrow Securities (continued)

• CE is $(\hat{p}(\alpha), \hat{p}(\beta)) \in \mathbb{R}_+^{2n}$ in which

$$(x_h(\alpha), x_h(\beta)) \in \mathbb{R}_+^2$$ solves

PC for $h = 1, \ldots, n$

and

$$\sum_h z_h(s) = 0 \text{ for } s = \alpha, \beta$$
Conclusion

• Every contingent claims equilibrium allocation is also an Arrow securities equilibrium allocation

• Every AS equilibrium in which \(p_b(s) > 0 \) for \(s = \alpha, \beta \) is also CC equilibrium allocation

• Every FM equilibrium allocation is also an MM equilibrium allocation

• Every MM equilibrium allocation in which \(p^m > 0 \) is also an FM equilibrium allocation

• But interpretations of MM differ widely from interpretations of FM