Problem 1: Inside money

\[t = 1,2 \]
\[l = 1 \]
\[h = 1, \ldots, n \]

Define notation.

a) Show that the competitive equilibrium allocation \(x = (x_1, \ldots, x_h, \ldots, x_n) \) for the money market economy is the same as the competitive equilibrium allocation in the futures market economy.

b) Why is the allocation independent of \(p^m \) if \(p^m > 0 \)? Give the full economic intuition for the case \(p^m > 0 \).

c) Give the full economic intuition of the case \(p^m = 0 \)
Problem 2: Outside Money, static economy

\[\omega = (\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6, \omega_7) \]
\[= (100, 90, 80, 70, 60, 50, 40) \]

Solve the following for \(P^m \), the set of equilibrium money prices \(P^m \).

a) \(\tau = (5, 4, 1, 0, -1, -4, -5) \)

b) \(\tau = (5, 3, 0, 0, -1, -2, -3) \)

c) \(\tau = (1, 1, 1, 0, -1, -1, -1) \)

d) \(\tau = (3, 2, 1, 0, -1, -1, -2) \)
Problem 3: Two currencies.

Red dollars, \(R \).
Blue dollars, \(B \).
\(\omega = (10, 9, 8, 7, 6) \)

Solve for exchange rates. Show units.

a) \(\tau^R = (5, 4, 0, -5, -5) \)
\(\tau^B = (1, 1, 1, 0, 0) \)

b) \(\tau^R = (1, 1, 1, 1, 1) \)
\(\tau^B = (1, 1, -1, -1, -1) \)

c) \(\tau^R = (2, -1, -1, -1, -1) \)
\(\tau^B = (-1, 2, 2, 2, 2) \)

d) \(\tau^R = (5, 0, 0, 0, -5) \)
\(\tau^B = (1, -1, 0, 0, 0) \)

e) Why are the exchange rates independent of \(\omega \)?