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Abstract

One cannot understand bank runs or the optimal contract without the

full pre-deposit game. For a simple 2-depositor banking model, we analyze

in detail the pre-deposit game by performing comparative statics. We show

how sunspot-driven run risk a¤ects the optimal contract depending on the

parameters, which is important to banks and regulators. This paper is yet

another example in which not all sunspot equilibria are mere randomizations

over certainty equilibria.
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1 Introduction

Bryant (1980) and Diamond and Dybvig (1983) �hereafter DD �introduced

the modern literature on panic-based bank runs. The bank deposit con-

tract is a mechanism designed to improve the welfare of depositors facing

an uncertain impulse demand (i.e., when they become impatient). Since

the impulse demand itself is not directly observable, it is uninsurable in the

market. The deposit contract facilitates some �insurance�by specifying early

and late withdrawals such that they are Bayesian incentive compatible (here-

after BIC): depositors with di¤erent liquidity needs correctly self-select their

types.1 Besides the �good�Bayes-Nash equilibrium in which the depositors

self-select, DD show that there is also a �bad�equilibrium, the self-ful�lling

bank run. When a bank run occurs, depositors attempt to withdraw early

independent of their liquidity needs. Bank runs are possible because, the

�good�equilibrium is only BIC rather than dominant-strategy incentive com-

patible (hereafter DSIC).2 If the patient depositor expects that a bank run

will take place, he will choose early withdrawal.

But given the two equilibria of the post-deposit game, the consumers will

not deposit if they anticipate the run: a bank run will not be an equilibrium

for the pre-deposit game. DD seem to have recognized this problem and o¤er

sunspots as an answer.3 Peck and Shell (2003) �hereafter PS � examine

sunspot equilibrium in the pre-deposit game.4

1That is., an impatient depositor chooses early withdrawal and a patient depositor
chooses late withdrawal if he expects that the other patient depositors will also choose
late withdrawal.

2In other words, for a patient depositor, choosing late withdrawal is weakly imple-
mentable rather than strongly implementable.

3In their paper, DD say that �This could happen if the selection between the bank
run equilibrium and the good equilibrium depended on some commonly observed random
variable in the economy. This could be a bad earnings report, a commonly observed run
at some other bank, a negative government forecast, or even sunspots [emphasis ours].�
Postlewaite and Vives (1987) show how bank runs can be seen as a prisoner�s dilemma-

type situation in which there is a unique equilibrium that involves a positive probability
of a run.

4See also Cooper and Ross (1998) and Ennis and Keister (2006). These two papers
analyze how banks respond to the possibility of runs in their design of deposit contracts
and in their investment decisions. Gu (2011) analyzes noisy sunspots and bank runs.
These three papers focus on simple deposit contracts, while PS allows for partial or full
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PS show that a sunspot-driven run can be an equilibrium in the pre-

deposit game as long as (1) the post-deposit game has both a run equilibrium

and a non-run equilibrium, and (2) the run probability is below a threshold

level. PS use a 2-depositor example to formalize the threshold probability,5

and the optimal deposit contract. In the example, the banking contract is

characterized by c which is the withdrawal of the �rst in line in period 1. The

optimal c is denoted by c�(s) which is a function of the exogenous, sunspot

probability s.6 In the PS example, c�(s) is a step function: If the probability

s is less than the threshold probability s0, the optimal contract c�(s) tolerates

runs and is a constant. If the probability s is greater than s0, the optimal

contract is the best run-proof contract.

In this paper, we ask: Why doesn�t the optimal contract become more

conservative as the run probability increases (until runs are no longer tol-

erated)? In other words, shouldn�t c�(s) be strictly decreasing in s until it

switches to the best run-proof contract? If yes, in which economies will we

have this property and in which economies is c�(s) a step function? These is-

sues are important to banks and regulators.7 Contracts and regulations could

well be di¤erent based on the economy�s level of fragility or pessimism as in-

dicated by the probability s. To answer these questions and keep the analysis

tractable, we employ the 2-depositor banking example in PS.8 Instead of re-

suspension of convertibility. The PS model is more general, but we adopt their 2-depositor
example.
Compared to DD, there is also intrinsic uncertainty (as opposed to extrinsic uncertainty

in the form of sunspots) in the PS model: (1) The aggregate number of impatient con-
sumers is uncertain. It could be 0; 1 or 2: This is important because it does not allow
the bank to know with certainty that a run is underway. (2) Sequential service is taken
seriously (Wallace (1988)). When 2 depositors withdraw early, their positions in the queue
are random.

5The example is in their proof for Proposition 3 (Page 114).
6Like other papers in the literature, PS assume that in equilibrium the bank chooses

the contract that maximizes the ex ante expected utility of depositors. This assumption
can be justi�ed when banks compete for deposits, there is no entry cost for banks, and
the depositors are ex ante identical.

7It is also an important question in the theory of sunspot equilibrium. Some practi-
tioners confuse sunspot equilibrium (SSE) with randomizations over certainty equilibria
(CE). Not all SSE are randomizations over CE. Not all randomizations over CE are SSE.
See Shell (2008).

8Green and Lin (2000), Andolfatto, Nosal and Wallace (2007) and Nosal and Wallace
(2009) analyze a model similar to PS. The main di¤erences among the models are on
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lying solely on numerical examples, we provide the global comparative statics

of the optimal contract.

We start the analysis from the post-deposit game for an arbitrary con-

tract c. We characterize the conditions on c for which the post-deposit game

allows for run equilibrium or non-run equilibrium. The optimal contract c�

is the BIC contract which maximizes the expected utility of the depositor.9

A contract is BIC if, for this contract, there exists a non-run Bayes-Nash

equilibrium in the post-deposit game. A contract is DSIC if the non-run

equilibrium is also the unique Bayes-Nash equilibrium in the post-deposit

game. By de�nition, the DSIC contracts is a subset of the BIC contracts.

For the �unusual�values of the parameters, the set of BIC contracts is

the same as the set of DSIC contracts. Hence, bank runs are not relevant for

the optimal contract. The analysis of the pre-deposit game is similar to the

post-deposit game. The details of c� under these �unusual�parameters are

in the Appendix.

For the �usual�values of the parameters, which is our focus in the paper,

the set of DSIC contracts is a strict subset of BIC contracts. Under the usual

parameters, c� is a¤ected by s unless c� is DSIC. The function c�(s) di¤ers

depending on the further speci�cation of the parameters.

To examine c�(s), we divide the �usual�part of the parameter space into

three cases: (1) the unconstrained e¢ cient allocation10 is DSIC; (2) it is

not DSIC but BIC; or (3) it is not BIC. In the �rst case, c� is the contract

supporting the unconstrained e¢ cient allocation and it is not a¤ected by s

the amount of information that a depositor has at the time of making his withdrawal
decision. Ennis and Keister (2009) show that the PS assumptions on marginal utilities
are not necessary for the qualitative results in PS. Ennis and Keister (2009) also study
the Green-Lin model under a more general speci�cation of the distribution of types across
agents. See Ennis and Keister (2010) for a good survey on this part of the literature.

9A contract is BIC if, for this contract, there exists a non-run Bayes-Nash equilibrium
in the post-deposit game. A contract is DSIC if the non-run Bayes-Nash equilibrium is
the unique post-deposit game.
10The unconstrained e¢ cient allocation is the best allocation that can be attained when

agent types (patient or impatient) are observable. In other words, the allocation maximizes
the ex ante expected utility of agents without imposing incentive compatibility, but it is
still subject to the sequential service and resource feasibility constraints. See Ennis and
Keister (2010). The associated contract is sometimes called the ��rst-best contract�.
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since the �good equilibrium�is DSIC.11 In the second case, c� should balance

the the trade-o¤ between the non-run and run equilibria. As s increases, the

trade-o¤ changes continuously and the expected utility of the depositor is

more tilted towards that of the run equilibrium. Hence the optimal contract

c�(s) is continuous and strictly decreasing until it switches to the best run-

proof c. In the third case, the trade-o¤ is constrained by the incentive-

compatibility constraint (hereafter ICC) which makes c� BIC. When s is

small, ICC binds and the optimal contract does not respond to changes

in s since the binding ICC is independent of s: In this case, a larger run

probability does not induce a more conservative contract since the binding

ICC has already forced c�(s) to be more conservative than it would be without

the ICC.

In the next section, we introduce the notation and the setup. In Section

3, we analyze the post-deposit game and characterize the non-run equilibrium

and the run equilibrium in the post-deposit game. We identify the �usual�

and �unusual�values of parameters. In Section 4, we provide the compara-

tive statics for the optimal contract under the �usual�values of parameters.

We focus on how di¤erent values of the parameter describing the relative

strength of the impulse demand lead to one of three cases discussed above.

In Appendix, we provide the proofs of our results. In an online appendix, we

provide the comparative statics with respect to the other parameters.

2 The Environment

The notation is from PS. There are two consumers and three periods: 0, 1

and 2. In period 0, each consumer is endowed with y units of the consumption

good.12 Let c1 and c2 denote the withdrawals of the depositor in period 1

and 2 respectively. The impatient consumers derive utility only from period-

1 consumption while the patient consumers derive utility only from period-2

11Note the di¤erence between the parameters with �unusual�values and Case 1. The
�unusual� values make the non-run equilibrium and run equilibrium cannot co-exist for
any contract c. But for Case 1, non-run equilibrium and run equilibrium can co-exist for
some contracts but they are not optimal.
12There are no endowments in periods 1 and 2.
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consumption. The patient consumers can store consumption goods costlessly

across the two periods. The impatient and patient consumers, respectively,

receive utilities u(c1) and v(c1 + c2), where

u(x) = A
(x)1�b

1� b , where A > 0: (1)

v(x) =
(x)1�b

1� b (2)

A re�ects the strength of the �impulse demand� of impatient consumers.

We will analyze this parameter in detail in section 3. The parameter b;

larger than 1, is the coe¢ cient of relative risk aversion of the consumers.

Consumers are identical in period 0. In period 1, each consumer becomes

either impatient with probability p or patient with probability 1� p. Types
are uncorrelated and private information. Since the number of consumers is

�nite, the aggregate number of patient depositors is stochastic. In period 1;

each depositor also observes a sunspot variable � distributed uniformly on

[0; 1]: Besides the storage technology, there is another investment technology.

Investing one unit of period 0 consumption yields R > 1 units if harvested

in period 2 and yields 1 unit if harvested in period 1.

The sequential service constraint is part of the physical environment.

A depositor visits the bank only when he makes a withdrawal. When a

depositor learns his type and makes his withdrawal decision, he does not

know his position in the bank queue. If more than one depositor chooses

to withdraw, a depositor�s position in the queue is random; positions in the

queue are equally probable.

3 Post-Deposit Game

3.1 Run Equilibrium in the Post-Deposit Game

A run equilibrium in the post-deposit game is de�ned as a Bayes-Nash equi-

librium in which all depositors choose to withdraw in period 1. Since the

impatient depositors always withdraw in period 1, a run equilibrium in the
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post-deposit game exists if a patient depositor strictly prefers period-1 with-

drawal when he expects that the other depositor will also choose period-1

withdrawal.13 That is, c 2 [0; 2y] satis�es

[v(c) + v(2y � c)]=2 > v[(2y � c)R]: (3)

Whether c 2 [0; 2y] satisfying inequality (3) exists depends on the para-
meters b and R: This is because, from inequality (3), the patient depositor�s

comparison between the early and late withdrawals depends on: (1) his atti-

tude toward the risk of being the second in line when participating in runs,

and (2) the productivity of the investment technology R: Given R; the more

risk-averse the patient depositor, the less preferable is it for the patient depos-

itor to run on the bank. Given his attitude toward risk, the more productive

the investment, the less preferable is it for the patient depositor to run on

the bank. Since v(c) = (c1�b � 1)=(1 � b), a patient depositor�s attitude
toward risk is characterized by b: Hence the existence of c 2 [0; 2y] satisfying
inequality (3) restricts the parameters b and R and we have the following

lemma.14

Lemma 1 If b < 1+ ln 2= lnR; the run equilibrium in the post-deposit game
exists if and only if c satis�es

c > cearly = 2y=[(2=Rb�1 � 1)1=(b�1) + 1]: (4)

If b � 1 + ln 2= lnR; there is no run equilibrium in the post-deposit game for

any c 2 [0; 2y]:

If b < 1+ln 2= lnR; cearly is the level of c beyond which a patient depositor

chooses early withdrawal if he expects that the other depositor will also

choose early withdrawal.

13As in other papers in the literature, we assume that a patient depositor chooses early
withdrawal if he strictly prefers the period-1 withdrawal to the period-2 withdrawal. And
he chooses period-2 withdrawal if he weakly prefers to do so.
14y is not important since it only changes the scale of the economy.
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3.2 Non-Run Equilibrium in the Post-Deposit Game

A non-run equilibrium in the post-deposit game is de�ned as a Bayes-Nash

equilibrium in which only impatient depositors choose to withdraw in period

1. Since the impatient depositors always withdraw in period 1, a non-run

equilibrium in the post-deposit game exists if a patient depositor (weakly)

prefers period-2 withdrawal when he expects that the other depositor, if

patient, will also choose period-2 withdrawal. That is, c 2 [0; 2y] satis�es

pv[(2y � c)R] + (1� p)v(yR) � p[v(c) + v(2y � c)]=2 + (1� p)v(c): (5)

Inequality (5) is also the ICC.

Lemma 2 If b < 1 + ln 2= lnR; the non-run equilibrium in the post-deposit

game exists if and only if c satis�es

c � cwait; (6)

where cwait is the level of c such that (5) holds as an equality.

Thus cwait is the level of c below which a patient depositor chooses late

withdrawal if he expects that the other patient depositor will also choose late

withdrawal. Thus, if b < 1 + ln 2= lnR, the set of BIC contracts is [0; cwait]:

3.3 Equilibria in the Post-Deposit Game for an arbi-

trary c

From the analysis above, we know that if b < 1 + ln 2= lnR, cearly and cwait

are well-de�ned and they are the two thresholds in the contract space. Fur-

thermore, if cearly < cwait, the set of DSIC contracts (i.e., [0; cearly]) is a strict

subset of BIC contracts. And the post-deposit game has a unique non-run

equilibrium for c 2 [0; cearly], two equilibria (one non-run equilibrium and

one run equilibrium) for c 2 (cearly; cwait], and a unique run equilibrium for

c 2 (cwait; 2y]: (See Figure 1.) The interval (cearly; cwait] is the region of c for
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which the patient depositors�withdrawal decisions exhibit strategic comple-

mentarity.

The following gives the requirements on the parameters b and R such that

cearly < cwait.

Lemma 3 cearly < cwait if and only if

b < minf2; 1 + ln 2= lnRg (7)

We call the part of parameter space where b and R satisfy (7) �usual�

since the set of DSIC contracts is a strict subset of BIC contracts. From PS,

we know that the pre-deposit game has a run equilibrium only if the post-

deposit game has both a non-run equilibrium and a run equilibrium.15 Given

the �usual�values of b and R, we know that a run-equilibrium exists in the

pre-deposit game only if the optimal deposit contract belongs to (cearly; cwait].

In the next section, we will solve the optimal deposit contract. Before we

discuss the optimal contract, we give a numerical example in which b and R

are �usual�.

Example 1 The parameters are

b = 1:01; p = 0:5; y = 3;R = 1:5:

These parameters will be �xed throughout the examples. We see that b and

R satisfy (7). Hence cearly must be strictly smaller than cwait: We have that

15Proposition 2 in PS.
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cearly = 4:155955 and cwait = 4:280878. Therefore, whenever a contract c

is larger than 4:155955 and smaller than or equal to 4:280878, both a run

equilibrium and a non-run equilibrium exist in the post-deposit game.

For completeness, we take a look at the post-deposit game when b and R

are �unusual�(i.e., they do not satisfy (7)). They are �unusual�since, under

these values of parameters, the set of BIC contracts is the same as the set of

DSIC contracts.16 According to the Revelation Principle,17 when we search

for the optimal contract we only have to focus on c which is BIC. Therefore,

under the �unusual� parameters, the optimal contract must also be DSIC

and bank runs are not relevant. We discuss the optimal contract under these

�unusual�parameters in the Appendix. For the rest of the paper, we just

focus on the economy with �usual�values of b and R:

4 The Optimal Contract in the Pre-Deposit

Game

When the values of b and R are �usual�, for any c 2 (cearly; cwait] we have mul-
tiple equilibria in the post-deposit game. We assume �as in PS �that bank

runs are sunspot-driven. Whether bank runs occur in the pre-deposit game

depends on whether the optimal contract belongs to the set (cearly; cwait].

To characterize the optimal contract, we divide the �usual parameters�into

three cases depending on bc, the contract supporting the unconstrained e¢ -
cient allocation. These three cases are: bc � cearly (Case 1), bc 2 (cearly; cwait]
(Case 2), and bc > cwait (Case 3). We next characterize the parameters for

each case. To be more speci�c, when b and R are �usual�, we show that each

case corresponds to certain range of the parameter A; the impulse multiplier

in the impatient consumer�s utility function.

16It is so because any BIC contract is also DSIC. Tho see this, we know that for the
�unusual�values of parameters we either have 2 � b < 1 + ln 2= lnR or b � 1 + ln 2= lnR:
For the former case cearly � cwait and thus the set of DSIC contracts is also [0; cwait]. For
the latter case, run-equilibrium cannot exist for any feasible contract according to Lemma
1. And thus any BIC contract must be DSIC.
17Myerson (1979)
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4.1 The Impulse Parameter A and the 3 Cases

The contract bc supports the unconstrained e¢ cient allocation, where bc is
de�ned by

bc = arg max
c2[0;2y]

cW (c);
where

cW (c) = p2[u(c)+u(2y�c)]+2p(1�p)[u(c)+v[(2y�c)R]]+2(1�p)2v(yR): (8)
cW (c) is the depositor�s expected utility if the types of the depositors are
observable ex post.18 Given the CRRA utility function, we have

bc = 2y

fp=(2� p) + 2(1� p)=[(2� p)ARb�1]g1=b + 1 : (9)

From (9), we know that bc is an increasing function of A. We write bc
as a function of A; bc(A): When the �impulse demand� is stronger, the un-
constrained e¢ cient allocation allows larger �rst-period withdrawal. From

equation (9), we also have

lim
A!0

bc(A) = 0
18cW (c) is also the depositor�s expected utility in the non-run equilibrium of the post-

deposit game.
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and

lim
A!1

bc(A) = 2y

[p=(2� p)]1=b + 1 :

From equations (4) and (??), we know that neither cearly nor cwait de-
pends on A. This is intuitive: cearly and cwait are determined by the patient

depositor�s utility which is independent of A. Hence if A is su¢ ciently small,

we have Case 1. Furthermore, if

2y

[p=(2� p)]1=b + 1 � c
early;

only Case 1 obtains.

If

cearly <
2y

[p=(2� p)]1=b + 1 � c
wait;

there is a unique level of A; denoted by Aearly; such that

bc(Aearly) = cearly: (10)

Hence if A � Aearly, we have Case 1. And if A > Aearly, we have Case 2.

Case 3 does not exist.

If

cwait <
2y

[p=(2� p)]1=b + 1 ;

there exists a unique level of A; denoted by Await; such that

bc(Await) = cwait: (11)

We now have all three cases: if A � Aearly, we are in Case 1; if Aearly < A �
Await, we are in Case 2; if A > Await, we are in Case 3.19

Example 2 We have shown that cearly = 4:155955 and cwait = 4:280878.

19It is easy to see that cearly does not depend on p and y < cearly < cwait < Ry.
lim
p!1

2y
[p=(2�p)]1=b+1 = y and lim

p!0

2y
[p=(2�p)]1=b+1 = 2y: Hence we know that for su¢ ciently

large p; 2y
[p=(2�p)]1=b+1 � c

early: If R < 2; cwait < 2y
[p=(2�p)]1=b+1 for su¢ ciently small p: For

intermediate values of p, we have cearly < 2y
[p=(2�p)]1=b+1 � c

wait:
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Now we calculate the thresholds of A for each case. It is easy to check that

cwait < 2y
[p=(2�p)]1=b+1 for the speci�ed parameter values. Therefore, all three

cases exist: We have Aearly = 6:217686 and Await = 10:27799: Hence if A �
6:217686, we are in Case 1; If 6:217686 < A � 10:27799, we are in Case 2;
If A > 10:27799, we are in Case 3.

In an online appendix, we show how the other parameters �namely p;R

and b �a¤ect bc. Unlike A; these parameters also a¤ect the values of cearly
and/or cwait and bc is not monotonic in the parameters. The analysis is slightly
more complicated in these cases, but once the parameter values are given,

we can readily compute the values of bc; cearly and cwait to determine which
case is applicable.

4.2 The Optimal Contract

In this subsection, we focus on the parameter values of b and R satisfying

condition (7). We will describe the optimal contract c� for the three cases

speci�ed above.

For an arbitrary contract c 2 [0; 2y]; we have one or two equilibria in

the post-deposit game depending on whether c belongs to (cearly; cwait] or

not. As equation (8) shows, the depositor�s expected utility in the non-run

equilibrium is cW (c). Let W run(c) denote the depositor�s expected utility in

the run equilibrium (if it exists). It is given by

W run(c) = p2[u(c) + u(2y � c)] + p(1� p)[u(c) + v(2y � c) + v(c) + u(2y � c)]
+(1� p)2[v(c) + v(2y � c)]: (12)

When c � cearly; only the non-run-equilibrium exists and the depositor�s

ex ante expected utility is simply cW (c): When cearly < c � cwait; both the

run-equilibrium and the non-run-equilibrium exist in the post-deposit game.

If the run is sunspot-driven and the run probability is s, the depositor�s ex-

ante expected utility is (1� s)cW (c) + sW run(c): When cwait < c � 2y; only
the run-equilibrium exists and therefore, no consumer would want to deposit
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in this bank. Hence when we consider the optimal contract, [0; cwait] is the

relevant choice interval for c.

Let c�(s) denote the optimal contract which maximizes the depositor�s

ex-ante expected utility in the pre-deposit game given the run probability

s.20 We have

c�(s) = arg max
c2[0;cwait]

W (c; s);

where

W (c; s) =

( cW (c) if c � cearly:
(1� s)cW (c) + sW run(c) if cearly < c � cwait:

(13)

Case 1 The unconstrained e¢ cient allocation is DSIC, i.e., bc � cearly:
Since the unconstrained e¢ cient allocation is strongly implementable, it

is straightforward to see that the optimal contract for the pre-deposit game

supports the unconstrained e¢ cient allocation

c�(s) = bc
and that a bank run does not occur in equilibrium. Other contracts cannot be

optimal because they either deliver lower welfare in the non-run equilibrium

or, to make things worse, they may also support a run equilibrium. The next

is a numerical example for Case 1.

Example 3 In Example 2, we have seen that as long as A � Aearly =

6:217686; we have Case 1 for this economy. Let A be equal to 1: We have

c�(s) = bc = 3:004012 for any s 2 [0; 1]: Since c�(s) < cwait = 4:280878; a

bank run is not an equilibrium.

As we have discussed in section 4.1, when A is larger than Await, we have

Case 2:
20At c�(s;A), consumers must weakly prefer depositing to autarky. This is because the

deposit contract can always mimic the autarky allocation by setting c�(s;A) equal to y.
Hence the participation constraint is not an issue for c 2 [0; cwait]
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Case 2 The unconstrained e¢ cient allocation is BIC but not DSIC, i.e.,

cearly < bc � cwait:
The optimal contract to the pre-deposit game cannot be bc except for the

degenerate case when s = 0. This is because a run equilibrium exists atbc. How much the optimal contract deviates from bc depends on s; which
changes the trade-o¤ between the expected utilities over the 2 post-deposit

game equilibria. We show in Proposition 1 how the optimal contract to the

pre-deposit game changes with the probability s.

Proposition 1 In Case 2, the optimal contract c�(s) satis�es: (1) If s is
larger than the threshold probability s0 (speci�ed in equation (21) in the

proof), the optimal contract is run-proof, c�(s) = cearly. (2) If s is smaller

than s0; the optimal contract c�(s) tolerates runs and it is a strictly decreasing

function of s: We have that c�(s) � bc (with equality if and only if s = 0).
From Proposition 1, we can see that, in Case 2, the contract support-

ing the unconstrained e¢ cient allocation also supports a run equilibrium in

the post-deposit game. Except for the degenerate case of the run probabil-

ity s being zero, that contract cannot be optimal since it delivers very low

welfare in the run equilibrium. The optimal contract should optimize the

ex-ante trade-o¤ between the depositors�welfares in the run and the non-run

equilibria. Intuitively: The trade-o¤ depends on the run probability s. For

positive s, a more conservative contract, still tolerating runs or eliminating

runs completely, is desirable. If s is larger than the threshold probability

s0, eliminating runs is less costly (in terms of ex ante welfare) than tolerat-

ing runs; hence the optimal contract is the best run-proof contract in which

the non-run equilibrium is implemented uniquely. On the other hand, if s

is smaller than s0, tolerating runs is less costly. Furthermore, c�(s) will be

strictly decreasing in s since, as s increases, the ex ante welfare leans more

towards the welfare in the run equilibrium. The sunspot equilibrium alloca-

tion in this case is not a mere randomization over the unconstrained e¢ cient

allocation and the corresponding run allocation.
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Example 4 In Example 2, we have seen that as long as 6:217686 < A �
10:277988; we have Case 2 for this economy. Let A be equal to 8: We have

that s0 = 1:382358 � 10�3. If s > s0; the optimal contract is run-proof and
c�(s) = cearly = 4:155955: If s < s0; the optimal contract tolerates runs and

c�(s) is strictly decreasing in s and c�(0) = bc = 4:225479. If s = s0, both the
run-proof contract (cearly) and the run-tolerating contract (ec(s0)) are optimal.
Figure 3 plots c�(s) of this case.

As we have discussed in section 4.1, we shift from Case 2 to Case 3 for

even larger values of A:

Case 3 The unconstrained e¢ cient allocation is not BIC, i.e., cwait < bc:
In this case, the unconstrained e¢ cient allocation is not implementable

since bc cannot satisfy the ICC. Like Case 2, the optimal contract for the pre-
deposit game also involves the trade-o¤ between the two post-deposit game

equilibria, but the trade-o¤ is constrained by the ICC.21 This changes how

c�(s) tolerates runs. To provide su¢ cient incentives for the patient depositors

to choose late withdrawal, the ICC requires that c be not too large. Hence the

binding ICC forces c�(s) to be more conservative than it would be without

21In Case 2, the ICC cannot bind. To see this, �rstly we know that a contract c which
is larger than the contract supporting the unconstrained e¢ cient allocation makes the
run equilibrium more devastating. Secondly, it does not improve welfare at the non-run
equilibrium. Hence to �nd the optimal contract, we need only to focus on contracts which
are more conservative than the contract supporting the unconstrained e¢ cient allocation.
So binding incentive compatibility cannot occur in Case 2.

17



the ICC. If the ICC binds, then for small s when runs are still tolerated, c�

is independent of s.

Proposition 2 In Case 3: (1) If s is larger than the threshold probability
s1 (speci�ed in equation (26) in the proof), we have c�(s) = cearly and the

optimal contract is run-proof. (2) If s is smaller than s1, the optimal contract

c�(s) tolerates runs and it is a weakly decreasing function of s: Furthermore,

we have c�(s) = cwait for at least part of the run tolerating range of s.

At least when s is su¢ ciently small, ICC binds. So for Case 3, when s is

su¢ ciently small, c�(s) does not change with s since the ICC does not depend

on s: The ICC may bind for just part of the run-tolerating range of s (the

�rst sub-case) or the whole run-tolerating range of s (the second sub-case).

The PS example belongs to the second sub-case. When the ICC binds, the

allocation supported by the optimal contract is a randomization over the

constrained e¢ cient allocation22 and the corresponding run allocation. The

unconstrained e¢ cient allocation is never supported by c�(s) since it is not

implementable.

We next provide two examples of the optimal contract for Case 3, which

correspond to the two sub-cases.

Example 5 In Example 2, we have seen that as long as A > 10:277988, we
have Case 3. Let A be equal to 10:4: We have that s2 = 1:719643 � 10�3

and s4 = 4:520095 � 10�3: Since s4 > s2; we are in the �rst sub-case. We

have that s3 = 4:524181 � 10�3: Hence when s < s2 = 1:719643 � 10�3; the
optimal contract tolerates runs and the ICC binds: c�(s) = cwait = 4:280878:

When s2 � s < s3 = 4:524181 � 10�3; the optimal contract tolerates runs
and the ICC does not bind. Hence c�(s) = c(s) and it is strictly decreasing

in s: When s = s3, both the run-proof contract cearly and the run-tolerating

contract (c(s3)) are optimal. When s3 < s; the optimal contract is run-proof

and c�(s) = cearly = 4:155955:

22Ennis and Keister (2010) de�ne the constrained e¢ cient allocation as �a (contingent)
consumption allocation to maximize the ex ante expected utility of agents subject to
incentive compatibility, sequential service, and resource feasibility constraints�. We use
the same de�nition.
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Example 6 Let A be equal to 11: We have s2 = 9:591026 � 10�3 and s4 =
5:281242 � 10�3: Since s4 � s2; we are in the second sub-case. Hence when
s < s4; the optimal contract tolerates runs and the ICC binds. c�(s) = cwait =

4:280878;When s > s4; the optimal contract is run-proof and c�(s) = cearly =

4:155955; When s = s4; both the run-proof contract (cearly) and the run-

tolerating contract (cwait) are optimal.

We plot c� versus s and A in Figure 6. If A � Aearly = 6:217686; we are in
Case 1 and the optimal contract doesn�t tolerate runs and it is equal to bc the
value of which depends on A. If 6:217686 < A � 10:277988, we are in Case
2 and the optimal contract is strictly decreasing in s until it levels o¤ at the

best run-proof contract cearly = 4:155955. If 10:277988 < A, we are in Case

3 and the ICC binds when s is small. The ICC may bind either in part of

the run-tolerating range of s (the �rst sub-case) or the whole run-tolerating

range of s (the second sub-case).
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In Figure 7, we plot the welfare loss (measured in percentage of endowment)

from being restricted to using for small s the contract supporting the con-

strained e¢ cient allocation and for large s to the best run-proof contract,

instead of using c�(s): In our calculations, we assume the bank is able to

choose the jump probability freely. If the jump probability is forced to be

the same as in c�(s), the welfare loss would typically be greater than that

shown in Figure 7. Since c�(s) equals the best run-proof contract for large

s; there is no welfare loss for large s. If we are in Case 1, the welfare loss is

0 since c�(s) is the same as the contract supporting the constrained e¢ cient

allocation. If we are in Case 2, the welfare loss is positive whenever runs are

tolerated by c�(s) and the loss is larger as the run probability increases. This

is because c�(s) is di¤erent from the contract supporting the constrained ef-

�cient allocation (except when s = 0) and, as s increases, c�(s) is smaller

but the contract supporting the constrained e¢ cient allocation (for �xed A)

doesn�t change. If we are in Case 3, the welfare loss is 0 for small s for

which ICC binds, which makes c�(s) the same as the contract supporting the

constrained e¢ cient allocation.
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5 Summary

PS show that bank runs (driven by sunspots) can be equilibria in the pre-

deposit game of the corresponding DD-type post-deposit banking model. The

optimal contract to the pre-deposit game in the PS example is a step-function

of the run-probability: the optimal contract tolerating runs does not change

with the run-probability until the probability reaches the threshold at which

the optimal contract switches to the best run-proof contract.

In this paper, the general form of the optimal contract to the pre-deposit

game is analyzed for di¤erent parameters. We focus on the set of parameters

set with �usual� values. This set is divided into three cases: the uncon-

strained e¢ cient allocation (1) is DSIC, (2) BIC not DSIC, or (3) not BIC.

We characterize the parameters for each case. Bank runs matter in the last

two cases. In both of these cases, the optimal contract switches to being run-

proof when the run probability is su¢ ciently large. When runs are tolerated,

whether the optimal contract should be more conservative for a larger run

probability di¤ers in the two cases: In Case 2, the ICC doesn�t bind since the

unconstrained e¢ cient allocation is (weakly) implementable. As a result of

balancing the trade-o¤ between the run equilibrium and non-run equilibrium

in the post-deposit game, the optimal contract adjusts continuously and be-

comes more conservative as the run probability increases. However, in Case

3, the ICC binds for small run-probabilities, which forces the contract to be
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more conservative than it would have been without the constraint. Hence,

for Case 3, the optimal contract does not change with s until the ICC no

longer binds.

The implication of identifying the cases of the optimal contract is that

how bank runs are tolerated can be complicated. As the economy�s level

of fragility or pessimism (indicated by the probability s) changes, how the

banking contract and bank regulation should respond is di¤erent for di¤erent

cases.

Our paper makes a contribution to the wider literature on sunspot equi-

librium. This is yet another example in which not all sunspot equilibria are

mere randomizations over certainty equilibria. See Shell (2008).

6 Appendix

6.1 Proof of Lemma 1

Inequality (3) holds if and only if

�(c1�b)=2 + (2y � c)1�b(R1�b � 1=2)
(b� 1) > 0:

For c 2 [0; 2y] to satisfy the above inequality, it is necessary that (R1�b �
1=2) > 0, which can be re-written as

b < 1 + ln 2= lnR: (14)

When b and R satisfy condition (14), Let cearly be the value of c such that

inequality (3) holds as an equality and we have

cearly = 2y=[(2=Rb�1 � 1)1=(b�1) + 1]:

Inequality (3) is equivalent to

c 2 (cearly; 2y]: (15)
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6.2 Proof of Lemma 2

Proof. The di¤erence between the left-hand side and the right hand side of
inequality (5) is a continuous function of c. If b < 1+ln 2= lnR, the di¤erence

is decreasing in c. It changes from +1 when c = 0 to �1 when c = 2y.

Hence there is a unique level of c 2 (0; 2y), such that

pv[(2y�cwait)R]+(1�p)v(yR) = p[v(cwait)+v(2y�cwait)]=2+(1�p)v(cwait):

holds with equality. Denote that level of c by cwait: So when b and R satisfy

the condition b < 1 + ln 2= lnR, inequality (5) is equivalent to

c 2 [0; cwait]: (16)

6.3 Proof of Lemma 3

Proof. If the condition (14) holds; cwait and cearly are well de�ned. To get
the condition on b and R such that inequality

cwait > cearly: (17)

holds, we merely need to replace c in inequality (5) by cearly and require that

inequality (5) holds. This results in

2=R

(2=Rb�1 � 1)1=(b�1) + 1 < 1: (18)

When b and R satisfy condition (14), (2=Rb�1 � 1)1=(b�1) is decreasing in b:
Hence inequality (18) is equivalent to

b < 2 (19)

To summarize, the set of c satisfying both condition (3) and (5) is non-empty

if and only if b and R satisfy both inequality (14) and inequality (19), which
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results in condition (7).

6.4 Proof of Proposition 1

Proof. Since cW (c) > W run(c); W (c; s) is not continuous at cearly if s > 0.

We study the two regions [0; cearly] and (cearly; cwait] separately, and compare

the maximum values of W (c; s) in these two regions.

For c 2 [0; cearly], W (c; s) is strictly increasing in c since cearly < bc: Hence
the maximum value of W (c; s) over [0; cearly] is achieved at cearly: Therefore

the best run-proof contract is c = cearly.

For c 2 (cearly; cwait], the maximum value ofW (c; s)may not be achievable
because (cearly; cwait] is not closed. To �x this problem, we de�ne a functionfW (c; s) on [cearly; cwait] by

fW (c; s) = (1� s)cW (c) + sW run(c):

When c 2 (cearly; cwait]; fW (c; s) = W (c; s). When c = cearly; fW (c; s) <
W (c; s): Let ec(s) be de�ned by

ec(s) = arg max
c2[cearly ;cwait]

fW (c; s):
We have ec(s) = maxf 2y

1=b + 1
; cearlyg; (20)

where

 =
s(1� p)(pA+ 1� p 2

Rb�1 ) + (p
2A+ (1� p)p 2

Rb�1 )

s(1� p)(1� pA) + p(2� p)A :

It can be shown that ec(s) is continuous in s. Furthermore, ec(s) is strictly
decreasing in s when s is small such that ec(s) > cearly:23 We also have cearly =ec(1) < ec(0) = bc: fW (ec(s); s) is continuous in s and it is also strictly decreasing
23It is easy to check that if ec(s;A) > cearly. ec(s;A) is strictly decreasing in s because

ARb�1 > 1: ARb�1 > 1 must hold in Case 2. To see why, it is trivial to establish that cearly

must be larger than y: Hence in Case 2, we have bc(A) > y; which leads to ARb�1 > 1:
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in s since cW (c) > W run(c): Furthermore, we have

fW (ec(0); 0) = cW (bc) > cW (cearly)
and fW (ec(1); 1) = W run(cearly) < cW (cearly):
Hence there is a unique s0 2 (0; 1) such that

fW (ec(s0); s0) = cW (cearly): (21)

Obviously, ec(s0) > cearly.
Hence if s < s0, we have c�(s) = ec(s): The optimal contract c�(s) tolerates

runs and it is a strictly decreasing function of s: We have cearly < c�(s) � bc
(with equality if and only if s = 0).

If s > s0, c�(s) = cearly: The optimal contract is run-proof.

If s = s0, fW (ec(s); s) = cW (cearly): So both the run-proof contract (cearly)
and the run-tolerating contract (ec(s0)) are optimal.
6.5 Proof of Proposition 2

Proof. The proof is similar to that for Proposition 1. The only di¤erence
is that the ICC may bind. We still study the two regions [0; cearly] and

(cearly; cwait] separately, and compare the maximum values ofW (c; s) in these

two regions.

For c 2 [0; cearly], it is easy to see that W (c; s) is strictly increasing.

Hence, as in Case 2, the best run-proof contract is still c = cearly.

For c 2 (cearly; cwait], the maximum value ofW (c; s)may not be achievable
because (cearly; cwait] is not closed. To �x that problem and characterize the

possibly binding ICC, we de�ne a function W (c; s) on [cearly; 2y] :

W (c; s) = (1� s)cW (c) + sW run(c):

When c 2 (cearly; cwait]; W (c; s) = W (c; s). When c = cearly; W (c; s) <
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W (c; s): Let c(s) be de�ned by

c(s) = arg max
c2[cearly ;2y]

W (c; s):

We have that

c(s) =
2y

�1=b + 1
; (22)

where

� =
s(1� p)(pA+ 1� p 2

Rb�1 ) + (p
2A+ (1� p)p 2

Rb�1 )

s(1� p)(1� pA) + p(2� p)A :

By using the same argument as that in Proposition 2, we can show that

c(s) is continuous in s. Furthermore, c(s) is strictly decreasing in s when s

is small such that c(s) > cearly: We also have that cearly = c(1) < c(0) = bc:
Note that in Case 3, cwait < bc: Hence there is a unique level of s 2 (0; 1);
denoted by s2; such that

c(s2) = c
wait: (23)

That is, s2 is the threshold run probability below which the ICC binds. Next,

we need to check, when s = s2, whether the optimal contract still tolerates

runs. To do that, we de�ne s4 by

s4 =
cW (cwait)�cW (cearly)cW (cwait)�W run(cearly)

: (24)

Obviously, s4 2 (0; 1). There will be two sub-cases depending on whether
the optimal contract still tolerates runs when when s = s2.

In the �rst sub-case of Case 3, s4 > s2; that is, at the threshold run prob-

ability which makes the ICC just become non-binding, the optimal contract

still tolerates runs. Now we need to determine the threshold run probabil-

ity beyond which the optimal contract switches to being run-proof. That

threshold level is s3 which is de�ned by

W (c(s3); s3) = cW (cearly): (25)

By using the same argument as that in Proposition 2, we know thatW (c(s); s)
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is continuous and strictly decreasing in s: Therefore, s3 is unique and it is

well de�ned. Since s4 > s2, we know that s3 > s2. c�(s) satis�es the following

property: When s < s2; the ICC binds and c�(s) = cwait since

W (cwait; s) =W (cwait; s) > cW (cearly):
When s2 � s < s3; the ICC no longer binds and c�(s) = c(s) since

W (c(s); s) =W (c(s); s) > cW (cearly):
When s = s3, both c(s) and cearly are optimal since

W (c(s); s) =W (c(s); s) = cW (cearly):
When s > s3, c�(s) = cearly since

W (c(s); s) =W (c(s); s) < cW (cearly):
To summarize, if s4 > s2 we have

c�(s) =

8><>:
cwait if s < s2
c(s) if s2 � s � s3
cearly if s3 � s.

In the second sub-case of Case 3, s4 � s2; that is, at the run probability
which makes the ICC just become non-binding, the optimal contract does

not tolerate runs. Hence the optimal contract will switch to the best run-

proof contract (cearly) when the ICC still binds. c�(s) satis�es the following

property: When s < s4; the ICC binds and c�(s) = cwait since

W (cwait; s) =W (cwait; s) > cW (cearly):
When s = s4; both cwait or cearly are optimal since

W (cwait; s) =W (cwait; s4) = cW (cearly):
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When s4 < s < s2; c�(s) = cearly. This is because the ICC binds and

W (cwait; s) =W (cwait; s) < cW (cearly):
When s2 � s, c�(s;A) is still equal to cearly. This is because the ICC no

longer binds and

W (c(s); s) =W (c(s); s) < W (c(s2); s2) =W (c
wait; s2) < cW (cearly):

To summarize, if s4 � s2; we have

c�(s) =

(
cwait if s � s4
cearly if s � s4.

We can see, in both of the two sub-cases, c�(s) switches to run-proof if the

run probability is larger than the threshold. Let s1 denote that threshold

run probability and we can have

s1 =

(
s3 if s4 > s2
s4 if s4 � s2.

(26)

6.6 The Optimal Contract for b and R with �unusual�

values.

When b and R do not satisfy condition (7), we either have

2 � b < 1 + ln 2= lnR

or

b � 1 + ln 2= lnR:

In the former case, we have cwait � cearly. And the post-deposit game has
a unique non-run equilibrium for c 2 [0; cwait] and a unique run equilibrium
for c 2 (cearly; 2y]. (See Figure 8.) And the interval (cwait; cearly] is the region
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of c for which the patient depositors�withdrawal decisions exhibit strategic

substitutability: A patient depositor withdraws late if and only if he expects

that the other patient depositor withdraws early. The set BIC contracts and

the set of DSIC contracts are the same, which is [0; cwait].

In the latter case, according to Lemma 1, run equilibrium cannot exist

for any contract c 2 [0; 2y] in the post-deposit game. Therefore any BIC

contract is also DSIC and hence the set BIC contracts is also the set of DSIC

contracts.

According to Revelation Principle, to �nd c�, we only have to focus on

the BIC contracts. With the �unusual� values, the BIC contract is also

DSIC. Hence, bank runs are not relevant for the optimal contract c� and c�

maximizes the expected welfare of the depositors at the non-run equilibrium:

c� = argmax
c

cW (c) (27)

s.t. c satis�es ICC (i.e. condition (5)).

If 2 � b < 1+ln 2= lnR; we know that c satis�es (5) if and only if c � cwait:
Hence the solution to the problem (27) is:

c� = minfbc(A); cwait)g:
If b � 1 + ln 2= lnR; cwait is not well-de�ned. From the proof of Lemma

2, we know that the di¤erence between the left-hand side and the right hand

side of inequality (5) is no longer decreasing in c. Let us denote that di¤erence
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by Diff(c). Diff(c) is strictly decreasing in c for c 2 [0; cwait] and strictly
increasing in c when c 2 [cwait; 2y]; where

cwait =
2y

[ 1�p=2
�p(R1�b�1=2) ]

�1=b + 1
:

Furthermore,Diff(0) = +1 andDiff(2y) = +1: Therefore, ifDiff(cwait) �
0, (5) holds for any c 2 [0; 2y]: If Diff(cwait) < 0; (5) holds for

c 2 [0; cwait1] [ [cwait2; 2y]; (28)

where cwait1 < cwait2 and they are the two solutions for Diff(c) = 0: Hence

if Diff(cwait) � 0 or Diff(cwait) < 0 and bc(A) satis�es condition (28); the
ICC doesn�t bind and the solution to the problem (27) is

c� = bc(A):
If Diff(cwait) < 0 and bc(A) doesn�t satisfy condition (28), the ICC binds and
c� is equal to cwait1 or cwait2 depending on which one delivers higher expected

welfare at the non-run equilibrium cW (c):
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