Bank Runs:

Bank Runs

\[U_I(C^1_I, C^2_I) = \begin{cases}
\bar{u} + u(C^1_I + C^2_I - 1) & \text{if } C^1_I \geq 1 \\
\beta \bar{u} + u(C^1_I + C^2_I - 1) & \text{if } C^1_I < 1
\end{cases} \]
and
\[U_P(C^1_P, C^2_P) = \bar{u} + u(C^1_P + C^2_P - 1), \]

Here: \(I \) and \(P \) denote actually impatient and actually patient. Assuming that it is always best to take a consumption opportunity if one can, the above equations give utility as a function of withdrawals. Feasibility is not relevant here. Assume that the left-over cash balance (in or out of bank) is the argument of \(u(\cdot) \). (Alternatively: at the end of period 2, left-over cash is deposited)
continuum of \textbf{ex-ante} identical consumers

y units of consumption

fraction α are impatient

α is uncertain, α_1 is actually withdrawal

\bar{u} for best consumption opportunity

$\beta \bar{u}$ for next-best $\beta < 1$

utility of "left-over" bank balance, $u(\cdot)$

$f(\alpha)$ defined on $[0, \bar{\alpha}]$, where $0 < \bar{\alpha} < 1$, e.g. $\bar{\alpha} = 1/2$
\[f_p(\alpha) = \frac{(1 - \alpha)f(\alpha)}{\int_0^{\alpha} (1 - a)f(a)da}. \]

Important for ICC.

Bayes Rule:

\[Prob(A|B) = \frac{Prob(B|A)Prob(A)}{Prob(B)} \]

A = \alpha, Prob(A) = f(\alpha)

B = depositor is patient

Prob(B) = \int_0^{\alpha} (1 - a)f(a)da

Prob(B|A) = 1 - \alpha
Now I stands for "withdraw in Period 1"

P Stands for "did not (or could not) withdraw in Period 1"

α_1 measures actually withdraw in period 1

2 Technologies (Wallace)

liquid: 1 unit yields 1 unit in period 1

OR $R_l > 1$ units in period 2

illiquid: 1 unit yields 0 in period 1

but R_i units $> R_l > 1$ in period 2
Sequential Service: z "order" in queue

Wallace:

$c^1(z)$: withdrawal in period 1 (by impatient and possibly by runners)
Lower case c’s introduced for study of Glass-Steagall bank

c^{1}(z) : period-1 withdrawal

c^{2}_{f}(\alpha_1) : period-2 withdrawal ”from liquid asset” by period-1 withdrawer

c^{2}_{p}(\alpha_1) : period-2 withdrawal ”from liquid asset” by period-1 non-withdrawer

\gamma : fraction of y invested in l

\begin{align*}
C^{2}_{f}(\alpha_1) &= c^{2}_{f}(\alpha_1) + (1 - \gamma)R_{i}y. \\
C^{2}_{p}(\alpha_1) &= c^{2}_{p}(\alpha_1) + (1 - \gamma)R_{i}y.
\end{align*}

C^{2}_{f}(\alpha_1) \geq 0 \text{ and } C^{2}_{p}(\alpha_1) \geq 0
\[\alpha_1 c_i^2(\alpha_1) + (1 - \alpha_1) c_P^2(\alpha_1) = [\gamma y - \int_0^{\alpha_1} c^1(z)dz] R_\ell. \quad \text{(RC)} \]

\[M = \{ \gamma, c^1(z), c_i^2(\alpha_1), c_P^2(\alpha_1) | \text{ Equation (RC) holds for all } \alpha_1 \} \]
2 Financial Systems:

- Unrestricted Bank, Unified System
- Restricted Bank, Glass-Steagall Bank, Separated System
(1) In the separated financial system, consumers place a fraction \((1 - \gamma)\) of their wealth in technology \(i\), whose return cannot be touched by the bank. In terms of resource constraint (RC), this is equivalent to imposing the additional constraints: \(c_P^2(\alpha_1) \geq 0\) and, more importantly, \(c_I^2(\alpha_1) \geq 0\). Combined with incentive compatibility, these additional constraints give rise to overinvestment in technology \(\ell\) and the possibility of bank runs.
(2) In the *unified financial system*, the bank is able to invest in both technologies. This allows the bank more flexibility in smoothing consumption and preventing runs. For example, when $\bar{\alpha}$ consumers arrive in period 1 (the worst case scenario), the bank can liquidate all of its technology ℓ holdings, but differentially reward consumers from technology i in period 2. Consumers who arrive in period 1 might receive less than $(1 - \gamma)R_iy$ in period 2, while consumers who wait might receive more than $(1 - \gamma)R_iy$. In terms of resource constraint (RC) this is equivalent to allowing $c_P^2(\alpha_1)$ or $c_I^2(\alpha_1)$ to be negative.
Sequential Service Result

\[c^1(z) = 1 \text{ for } z \leq \gamma y. \]

\[c^1(z) = 0 \text{ otherwise} \quad (3) \]
Welfare under Unrestricted Banking

\[W = \int_{0}^{\gamma y} [\bar{u} + (1 - \alpha) u((1 - \gamma) y R_A + c_{P}^{2}(\alpha) - 1) + \alpha u((1 - \gamma) y R_A + c_{f}^{2}(\alpha))] f(\alpha) d\alpha \]

\[+ \int_{\gamma y}^{\bar{\alpha}} [(1 - \alpha + \gamma y) \bar{u} + (\alpha - \gamma y) \beta \bar{u} + (1 - \alpha) u((1 - \gamma) y R_A + c_{P}^{2}(\alpha) - 1) + (\alpha - \gamma y) u((1 - \gamma) y R_A + c_{P}^{2}(\alpha) - 1) + \gamma y u((1 - \gamma) y R_A + c_{P}^{2}(\alpha)] f(\alpha) d\alpha \]
Incentive Compatibility (ICC):

I denotes early withdrawal (running), P denotes early non-withdrawal

\[\int_0^{\hat{\alpha}} u(c_P^2(\alpha) + (1 - \gamma)yR_A - 1) f_P(\alpha) \, d\alpha \]

\[\geq \int_0^{\gamma y} u(c_i^2(\alpha) + (1 - \gamma)yR_A) f_P(\alpha) \, d\alpha \]

\[+ \int_{\gamma y}^{\hat{\alpha}} (\gamma y / \alpha) u(c_i^2(\alpha) + (1 - \gamma)yR_A) \]

\[+ (1 - \gamma y / \alpha) u(c_P^2(\alpha) + (1 - \gamma)yR_A - 1) f_P(\alpha) \, d\alpha. \] \hspace{1cm} (5)

Resource constraint (RC):

\[\alpha_1 c_i^2(\alpha_1) + (1 - \alpha_1)c_P^2(\alpha_1) = (\gamma y - \alpha_1) R_B \quad \text{if } \alpha_1 \leq \gamma y \]

\[\gamma y c_i^2(\alpha_1) + (1 - \gamma y)c_P^2(\alpha_1) = 0 \quad \text{if } \alpha_1 > \gamma y. \] \hspace{1cm} (6)
Profit-maximizing perfectly-competitive bank chooses the contract so as to:

\[
\begin{align*}
\max & \quad W \\
\text{wrt} & \quad \gamma, \ c_i^2(a_1), \ c_p^2(a_1) \\
\text{subject to} & \quad \text{ICC}(5) \text{ and } \text{RC } (6).
\end{align*}
\]
The so-called "optimal contract" for the unified system satisfies $\gamma y < \bar{\alpha}$. The "first" γy impatient consumers to arrive are fully served by the bank in period 1. There is a positive probability that $\alpha > \gamma y$ holds, in which case $(\alpha - \gamma y)$ impatient consumers are rationed. Patient consumers do not withdraw in period 1, and we have full consumption smoothing, i.e.,

$$c_f^2(\alpha_1) = c_p^2(\alpha_1) - 1$$

for all $\alpha_1 \leq \gamma y$. \hfill (8)
Proof:

\[
\left(\frac{\partial W}{\partial \gamma} \right)_{\gamma=\bar{\alpha}/y} = \int_0^{\bar{\alpha}} y(R_B - R_A) u'[c_P^2(\alpha) - 1 + (y - \bar{\alpha})R_A] f(\alpha) d\alpha < 0.
\]

Consumption Smoothing:

\[
c_P^2(\alpha_1) = c_I^2(\alpha_1) + 1 \\
\text{So } C_P^2(\alpha_1) = C_I^2(\alpha_1) + 1
\]

for all \(\alpha_1 \),

\(c_I^2(\alpha_1) \) could be negative, even though \(C_P^2(\alpha_1) \) and \(C_I^2(\alpha_1) \) must be non-negative.
Central Result for Unified System:
Under the optimal contract, there is no run equilibrium.
The Separated System (Restricted or Glass-Steagall Bank) holds only if

\(\gamma y \) deposited in bank

\((1 - \gamma)y \) deposited in mutual fund with gross return \(R_i \), which is perfectly illiquid

Glass-Steagall Constraint (GSC):

\[c_i^2(\alpha_1) \geq 0 \text{ and } c_P^2(\alpha_1) \geq 0 \text{ for all } \alpha_1. \] (10)
Bank's Problem

$$\max W$$

wrt $\gamma, c_f^2(\alpha_1), c_p^2(\alpha_1)$ \hspace{1cm} (11)

subject to RC, ICC, and GSC.

$$\max W(\text{rest. bank}) \leq \max W(\text{unrest. bank})$$
Glass-Steagall Bank

\[c_P^2(1) < c_P^2(\bar{\alpha}) < 1 \]

Hence: always a run equilibrium
2 Systems

Unrestricted:

- More stable: never has panic-based runs
- Can run out of cash in period 1 (not a bad thing)

Restricted

- Less stable: always subject to runs
- Only runs out of cash during panic-based runs
Sunspot-driven runs on the Glass-Steagall Bank

Run equilibrium is not an equilibrium to the pre-deposit game

Hence introduce sunspot-triggered runs, which occur with probability π

Let W^* be welfare under the so-called optimal contract without a run.

Let \overline{W} be welfare under the best contract that is immune to runs.

Let \underline{W} be welfare during a run under the so-called "optimal contract".
Optimal welfare is achieved by risking run is π is small.

Red indicates best W as function of π. If run risk is less than π^*, employ so-called "optimal contract". Otherwise, choose best contract immune to runs.
Numerical Example: The unified system

\[y = 10, \quad u(c) = 100 \log(c) - 249, \quad \bar{u} = 20, \quad R_A = 1.1, \quad \beta = 0.7, \]

uniform distribution with \(\bar{\alpha} = 0.5 \):

\[f(\alpha) = \begin{cases}
2 & \text{for } \alpha \in [0, 0.5] \\
0 & \text{otherwise.}
\end{cases} \] (9)

- \(R_B = 1.05 \), we have \(\gamma = 0.04544, \quad \gamma y = 0.4544 \) and \(W = 0.8942 \)
- \(R_B = 1.08 \), we have \(\gamma = 0.04807, \quad \gamma y = 0.4807 \) and \(W = 0.9599 \).
Numerical Example: The separated system (The Glass-Steagall Bank)

- $R_B = 1.08$. $\gamma = 0.09445 > 0.04807$, $W = 0.8688 < 0.9599$
- γ in GS is about twice γ in unrestricted bank.
- high γ is anti-growth
Sunspots and Glass-Steagall Example

- $R_B = 1.08$.
- best γ to avoid runs is $\bar{\gamma} = 0.09630$, $\pi^* = 0.5521\%$
- "Runs" back in the bank runs literature.