Economics 4905 Spring 2016 Financial Fragility and the Macroeconomy Cornell University

Clarification of Wednesday, April 6 Lecture

 $V_h = \pi(\alpha)u_h(x_h(\alpha)) + \pi(\beta)u_h(x_h(\beta)),$

positive marginal utility, $u'_h > 0$, declining marginal utility, $u''_h < 0$, so u_h is strictly increasing and strictly concave h is risk-averse.

Assume that $x_h(\alpha) \neq x_h(\beta)$. To show that *h* prefers consumption smoothing. In particular, she prefers $\bar{x}_h = \pi(\alpha)x_h(\alpha) + \pi(\beta)x_h(\beta)$ in each state to $(x_h(\alpha), x_h(\beta))$.

$$V_h(\bar{x}_h, \bar{x}_h) = \pi(\alpha)u_h(\bar{x}_h) + \pi(\beta)u_h(\bar{x}_h)$$

= $u_h(\bar{x}_h)$ because $\pi(\alpha) + \pi(\beta) = 1$
= $u_h(\pi(\alpha)x_h(\alpha) + \pi(\beta)x_h(\beta))$
> $\pi(\alpha)u_h(x_h(\alpha)) + \pi(\beta)u_h(x_h(\beta))$

because the concave function u_h is above its chords.

Remark:

$$\sum_{h} \bar{x}_{h} = \sum_{h} \bar{x}_{h}(s) \quad \text{for } s = \alpha, \beta.$$