Liquidity Regulation and the Implementation of Monetary Policy

Todd keister and Morten Bech

Presented by Nick Goldman
Overview

- 2008 financial crisis → Clear need for financial stability improvements
- Basel Committee on Banking Supervision (BCBS) implements new international regulations, known as Basel III
- New banking parameters supplement existing reserve requirements
- **Liquidity Coverage Ratio (LCR)** entails additional liquid assets in case of financial stress
- Potential **unintended effects** of LCR:
 - Deviation of untargeted interest rates
 - Interference of monetary policy
Agenda

- Outline Liquidity Coverage Ratio
- Present the model
- Introduce LCR into the model
- Effects on interest rates
- Effects on monetary policy
Liquidity Coverage Ratio

\[LCR = \frac{\text{Stock of unencumbered high-quality liquid assets}}{\text{Net cash outflows over the next 30 calendar days}} \geq 1. \]

- Banks must hold **sufficient quantity of High-Quality Liquid Assets (HQLA)** to survive a 30-day period of market stress

- Two types of HQLA
 - Level 1: Cash, central bank reserve, certain marketable securities
 - Level 2: Government securities, corporate debt, residential MBS, certain equities

- Projected net cash outflows
 - Multiply size of each type of liability (or obligation) by its respective runoff rate in a stress scenario
The model
The model

- Single time period – divided into three stages (0, 1, 2)
- Three participants in this economy
 1. Continuum of Banks, [0, 1]
 2. Central bank
 3. Representative investor
 - Aggregate financial position of households + non-financial firms
Balance Sheets

<table>
<thead>
<tr>
<th>Bank i</th>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L^i</td>
<td>D^i</td>
</tr>
<tr>
<td></td>
<td>B^i</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R^i</td>
<td>E^i</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Central Bank</th>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L^{CB}</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>B^{CB}</td>
<td>E^{CB}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Investors</th>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L^H</td>
<td>E^H</td>
</tr>
<tr>
<td></td>
<td>B^H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>E^H</td>
</tr>
</tbody>
</table>

\[
\int_0^1 L^i di + L^{CB} + L^H = \bar{L} \]
\[
\int_0^1 B^i di + B^{CB} + B^H = \bar{B}. \]
\[
\int_0^1 D^i di = D, \]
\[
\int_0^1 R^i di = R. \]
Timeline - single period

- Two securities traded in the market
 - a: overnight loans
 - b: term loans
- Payment shock *after* markets close
- CB discount window remains open
End-of-Period Balance Sheet

<table>
<thead>
<tr>
<th>Assets</th>
<th>Bank i</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loans L^i</td>
<td>Deposits $D^i - \varepsilon^i$</td>
<td>Net interbank borrowing $\Delta^i_a + \Delta^i_b$</td>
</tr>
<tr>
<td>Bonds B^i</td>
<td></td>
<td>Borrowing from CB X^i</td>
</tr>
<tr>
<td>Reserves $R^i + \Delta^i_a + \Delta^i_b - \varepsilon^i + X^i$</td>
<td>Equity E^i</td>
<td></td>
</tr>
</tbody>
</table>
Balance Sheet + Requirements

Reserve Requirement

\[R^i + \sum_{j=a,b} \Delta_j^i - \varepsilon^i + X^i \geq K^i. \]

K = RR for the period

LCR Requirement

\[LCR^i = \frac{B^i + R^i + \sum_j \Delta_j^i - \varepsilon^i + X^i}{\theta_D(D^i - \varepsilon^i) + \sum_j \theta_j \Delta_j^i + \theta_X X^i} \geq 1. \]

\[\theta = \text{runoff rate} \quad j = a,b \]
Market interest rates

Bank profits

\[
\pi^i(\varepsilon^i) = r_LL^i + r_BB^i - r_D (D^i - \varepsilon^i) - \sum_j r_j \Delta_j^i + r_K K^i + r_R \max\{R^i - K^i + \sum_j \Delta_j^i + X^i - \varepsilon^i, 0\} - r_X X^i.
\]

\[
X^i = \max\{X^K_i, X^C_i\}.
\]

In aggregate,

Profits = (interest on assets) – (interest on liabilities)

Interest rates

- \(r_R\) = excess reserves
- \(r_X\) = Discount window
- \(r_X > r_R\)
 - rate corridor
Equilibrium rates under LCR
Borrowing to meet requirements

Reserve Requirement

\[R^i + \sum_{j=a,b} \Delta_j^i - \varepsilon^i + X^i \geq K^i. \]

\[\varepsilon_K^i \equiv R^i - K^i + \sum_{j=a,b} \Delta_j^i. \]

LCR Requirement

\[LCR^i = \frac{B^i + R^i + \sum_j \Delta_j^i - \varepsilon^i + X^i}{\theta_D(D^i - \varepsilon^i) + \sum_j \theta_j \Delta_j^i + \theta_X X^i} \geq 1. \]

\[\varepsilon_B^i \equiv S^i + \sum_{j=a,b} \frac{1 - \theta_j}{1 - \theta_X} \Delta_j^i. \]

\[S^i = \frac{B^i + R^i - \theta_D D^i}{1 - \theta_D}. \]

\[g(\varepsilon) \]

(i) \(\varepsilon_K^i < \varepsilon_C^i \)

(ii) \(\varepsilon_K^i > \varepsilon_C^i \)
Borrowing to meet requirements

- When the LCR is the constraining requirement:
 - Overnight rate is lower (vs no LCR)
 - Term loan rate is higher
 - Term loans are advantageous because of their **lower runoff rate**
 - This represents a **regulatory premium**

\[
\begin{align*}
 r^* &= r_R (\text{prob}[\varepsilon < \hat{\varepsilon}^*]) + r_X \text{prob} [\varepsilon > \hat{\varepsilon}^*] \\
 r_T^* &= r^* + (r_X - r_R) \text{prob}[\varepsilon^*_C < \varepsilon < \hat{\varepsilon}^*]
\end{align*}
\]
if time...

Open market Operations
Open market Operations

- Central Bank buys (or sells) assets from (to) banks

- Z = assets involved in OMO

- α = proportion of assets exchanged with banks, as opposed to the general investor
Example: CB buys bonds from banks (α = 1)

- LCR risk remains unchanged
- RR risk increases
- Overnight rate falls

Another example of the regulatory premium

Red is term loan rate
Blue is overnight rate
Thank you
Sources
