Liquidity Regulation and the Implementation of Monetary Policy

Todd keister and Morten Bech

Presented by Nick Goldman

Overview

- 2008 financial crisis [] Clear need for financial stability improvements
- Basel Committee on Banking Supervision (BCBS) implements new international regulations, known as Basel III
- New banking parameters supplement existing reserve requirements
- Liquidity Coverage Ratio (LCR) entails additional liquid assets in case of financial stress
- Potential unintended effects of LCR:
 - Deviation of untargeted interest rates
 - Interference of monetary policy

Agenda

- Outline Liquidity Coverage Ratio
- Present the model
- Introduce LCR into the model
- Effects on interest rates
- Effects on monetary policy

Liquidity Coverage Ratio

 $LCR = \frac{Stock \ of \ unencumbered \ high-quality \ liquid \ assets}{Net \ cash \ outflows \ over \ the \ next \ 30 \ calendar \ days} \ge 1.$

- Banks must hold sufficient quantity of High-Quality Liquid Assets (HQLA) to survive a 30-day period of market stress
- Two types of HQLA
 - Level 1: Cash, central bank reserve, certain marketable securities
 - Level 2: Government securities, corporate debt, residential MBS, certain equities
- Projected net cash outflows
 - Multiply size of each type of liability (or obligation) by its respective runoff rate in a stress scenario

The model

The model

- Single time period divided into three stages (0, 1, 2)
- Three participants in this economy
- 1. Continuum of Banks, [0, 1]
- 2. Central bank
- 3. Representative investor
 - Aggregate financial position of households + non-financial firms

Balance Sheets

Bank <i>i</i>			
Assets		Liabilitie	s
Loans	L^i	Deposits	D^i
Bonds	B^i		
Reserves	R^i	Equity	E^i

 $\int_0^1 L^i di + L^{CB} + L^H = \bar{L}$

$$\int_0^1 B^i di + B^{CB} + B^H = ar{B}.$$
 $\int_0^1 D^i di = D,$

Central Dank			
Assets		Liabilities	
Loans	L^{CB}	Reserves	R
Bonds	B^{CB}	Equity	E^{CB}

Central Bank

Investors			
Assets		Liabilities	
Loans	L^H		
Bonds	B^H		
Deposits	D	Equity	E^{H}

 $\int_0^1 R^i di = R.$

Timeline - single period

- Two securities traded in the market
 - **a**: overnight loans
 - **b**: term loans

- Payment shock after markets close
- CB discount window remains open

End-of-Period Balance Sheet

Bank <i>i</i>			
	Assets	Liabilities	
Loans	L^i	Deposits	$D^i - \varepsilon^i$
Bonds	B^i	Net interbank borrowing	$\Delta_a^i + \Delta_b^i$
Reserves	$R^i + \Delta^i_a + \Delta^i_b - \varepsilon^i + X^i$	Borrowing from CB	X^i
		Equity	E^i

Balance Sheet + Requirements

Bank i			
	Assets	Liabilities	
Loans	L^i	Deposits	$D^i - \varepsilon^i$
Bonds	B^i	Net interbank borrowing	$\Delta_a^i + \Delta_b^i$
Reserves	$R^i + \Delta_a^i + \Delta_b^i - \varepsilon^i + X^i$	Borrowing from CB	X^i
		Equity	E^{i}

Reserve Requirement

LCR Requirement

$$R^{i} + \sum_{j=a,b} \Delta_{j}^{i} - \varepsilon^{i} + X^{i} \ge K^{i}.$$

$$LCR^{i} = \frac{B^{i} + R^{i}}{\theta_{D}(D^{i} - \varepsilon^{i})}$$

$$K = RR \text{ for the period}$$

$$\Theta = \text{run}$$

$$\mathcal{L}CR^{i} = \frac{B^{i} + R^{i} + \sum_{j} \Delta_{j}^{i} - \varepsilon^{i} + X^{i}}{\theta_{D}(D^{i} - \varepsilon^{i}) + \sum_{j} \theta_{j} \Delta_{j}^{i} + \theta_{X} X^{i}} \ge 1.$$

 $\Theta = \text{runoff rate} \quad \mathbf{j} = \mathbf{a}, \mathbf{b}$

Market interest rates

Bank profits

$$\pi^{i}(arepsilon^{i}) = r_{L}L^{i} + r_{B}B^{i} - r_{D}\left(D^{i} - arepsilon^{i}
ight) - \sum_{j}r_{j}\Delta^{i}_{j} + r_{K}K^{i}
onumber \ + r_{R}\max\left\{R^{i} - K^{i} + \sum_{j}\Delta^{i}_{j} + X^{i} - arepsilon^{i}, 0
ight\} - r_{X}X^{i}.$$

$$X^i = \max\left\{X_K^i, X_C^i\right\}.$$

In aggregate,

Profits = (interest on assets) – (interest on liabilities)

Interest rates

- r_R = excess reserves
- r_x = Discount window
- $\mathbf{r}_{\mathrm{X}} > \mathbf{r}_{\mathrm{R}}$
 - rate corridor

Equilibrium rates under LCR

Borrowing to meet requirements

Borrowing to meet requirements

- When the LCR is the constraining requirement:
 - Overnight rate is lower (vs no LCR)
 - Term loan rate is higher
 - Term loans are advantageous because of their lower runoff rate
 - This represents a <u>regulatory premium</u>

$$r^{*} = r_{R}(prob[\varepsilon < \hat{\varepsilon}^{*}]) + r_{X} prob[\varepsilon > \hat{\varepsilon}^{*}]$$
$$r_{T}^{*} = r^{*} + (r_{X} - r_{R})prob[\varepsilon_{C}^{*} < \varepsilon < \hat{\varepsilon}^{*}]$$

if time... **Open market Operations**

Open market Operations

- Central Bank buys (or sells) assets from (to) banks
- Z = assets involved in OMO
- α = proportion of assets exchanged with banks, as opposed to the general investor

Central Bank			
Assets		Liabilities	
Loans	$L_0^{CB} + z_L$	Reserves	$R_0 + z$
Bonds	$B_0^{CB} + z_B$	Equity	E^{CB}

Banking System			
Assets		Liabilities	
Loans	$L_0 - \alpha_L z_L$	Deposits	$D_0 + (1 - \alpha_L)z_L + (1 - \alpha_B)z_B$
Bonds	$B_0 - \alpha_B z_B$		
Reserves	$R_0 + z$	Equity	Ε

OMO

Example: CB buys bonds from banks (α = 1)

Thank you

Sources

Keister, Todd, and Morton Bech. "Liquidity Regulation and the Implementation of Monetary Policy." *Journal of Economic Literature* (2015): n. pag. *Toddkeistcer.net*. Web. <http://www.toddkeister.net/pdf/BK_LCR.pdf>.

Keister, Todd, and Morton Bech. *Liquidity Regulation and the Implementation of Monetary Policy*. Powerpoint Presentation. N.p., n.d. Web. <http://www.toddkeister.net/pdf/BK_LCR_slides.pdf>.