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Setup

Probability of impatience is λ = 30%.
Utility is u(c) = c1−γ

1−γ , where γ = 1.01.
Costless storage.
R = 2
Each individual has endowment ω = 100.
If the illiquid asset is harvested early the rate of return is zero, if
harvested late the rate of return (R − 1) is 100%.
Let (d1, d2) be the deposit contract.
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Expected Utility, W

The depositor’s expected utility W as a function of early consumption
c1 and late consumption c2 will be
W = λu(c1) + (1− λ)u(c2)
W = λc1−γ

1
1−γ + (1−λ)c1−γ

2
1−γ = 0.3c−(0.01)

1
−(0.01) + 0.7c−(0.01)

2
−(0.01)
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Preference for Consumption Smoothing

The smoothed allocation (c̄, c̄), where c̄ = λc1 + (1− λ)c2, is
preferred to (c1, c2) if c1 6= c2.
Proof:
u′(c) = (1−γ)c−γ

1
1−γ = c−γ > 0

u′′(c) = −γc−γ−1 < 0

So u(c) is strictly concave (the consumer is risk-averse). Concave
functions lie above their chords (Jensen’s inequality):
u(λc1 + (1− λ)c2) > λu(c1) + (1− λ)u(c2) when c1 6= c2,
So W (c̄, c̄) > W (c1, c2) where c̄ = λc1 + (1− λ)c2.
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The Resource Constraint

The resource constraint RC will be

(1− λ)d2 ≤ (ω − λd1)R ⇒ 0.70d2 ≤ 2(100− 0.30d1)

Where dt is the withdrawal allowed in period t = 1, 2.

Depositors cannot withdraw more than what is left in the bank in the
second period (although the remaining deposits will have grown with
a return factor R).

The left-hand side of the inequality is the funds to be withdrawn in
period 2. The right-hand side is the resources available in period 2. If
the inequality is violated, the bank is insolvent.
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Incentive Compatibility

The incentive compatibility constraint (ICC) is d1 ≤ d2
If the inequality does not hold, then there will not be sufficient
incentive to withdraw late. Everyone will attempt to withdraw early;
the depositors do not self-select correctly.
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The Optimal Deposit Contract

Now we can solve for the so-called “optimal deposit contract” to the
post-deposit game, i.e., provide the numerical values for (c∗1 , c∗2 ).
The bank will design a contract to maximize W (d1, d2) while
constrained by the resources such that (1− λ)d2 = (ω − λd1)R.

max{W (d1, d2)} ⇒ max{λu(d1) + (1− λ)u(d2)}

Subject to (1− λ)d2 − (ω − λd1)R = 0
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A Note on Lagrange Optimization

Lagrangian optimization is used to find the points of a maximum or a
minimum of a function along a boundary (i.e., a constraint). In our case,
due to the monotonic but diminishing returns of consumption to utility,
this will lead to a maximization.
We could also re-write one of our input variables with the constraint and
plug it back into our original function, then set the derivative to zero.
However, while the result will be equivalent, the math may become
somewhat messier, especially in higher-dimensional cases.

ECON 4905 (Cornell University) Bank Runs October 5, 2016 8 / 16



Lagrange Optimization in General

Say we wish to find the maximum of U : Rn → R along a constraint
C(x) = 0, a level set, where x ∈ Rn. We need only find points where the
gradient of the function is a scalar multiple of the gradient of the
constraint.

∇U = −δ∇C or ∇U + δ∇C = 0

For convenience, we often define a Lagrangian as L (x) = U(x) + δC(x),
such that the points x that maximize U will satisfy ∇L (x) = 0. This
means ∂L

∂xi
= 0 ∀xi and ∂L

∂δ = 0 if x maximizes U along the constraint.
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Setting Up the Lagrangian

The Lagrangian is

L (d1, d2) = [λu(d1) + (1− λ)u(d2)]− δ[(1− λ)d2 − (ω − λd1)R]

The first order constraints conditions become

∂L

∂d1
= λu′(d1)− δλR = 0

⇒ λu′(d1) = δλR ⇒ u′(d1) = δR

And
∂L

∂d2
= (1− λ)u′(d2)− δ(1− λ) = 0

⇒ (1− λ)u′(d2) = δ(1− λ) ⇒ u′(d2) = δ
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Dividing out the Lagrange Multiplier

Thus:
u′(d1)
u′(d2) = δR

δ
= R

And recalling that u′(c) = c−γ ,

d−γ1
d−γ2

=
(d1

d2

)−γ
=

(d2
d1

)γ
= R

So d2
d1

= R
1
γ .
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Plugging Back into the Constraint

If the RC requires (1−λ)d2 = (ω−λd1)R, then d2 = (ω−λd1)R
(1−λ) . Therefore:

(ω − λd1)R
d1(1− λ) = R

1
γ ⇒ (ω − λd1) = R

1
γ
−1d1(1− λ)

Dividing through by d1,

ω

d1
− λ = R

1
γ
−1(1− λ) ⇒ 1

d1
= R

1
γ
−1(1− λ) + λ

ω

So
c∗1 = d∗1 = ω

R
1
γ
−1(1− λ) + λ

And c∗2 = d∗2 may be found using d∗2 = R
1
γ d∗1 .
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Numerical Results

Plugging in our parameter values,

d∗1 = ω

R
1
γ
−1(1− λ) + λ

= 100
2( 1

1.01−1)(0.70) + 0.30
= 100.48

d∗2 = R
1
γ d∗1 = 2

1
1.01 (100.48) = 199.59

So the optimal deposit contract is (d∗1 , d∗2 ) = (100.48, 199.59).
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Running on the Bank

Is there a bank run to the “so-called optimal deposit contract” for
this bank?
Yes, as d∗1 > ω = 100. If all depositors (not just the impatient ones,
but the patient ones, too) decide to withdraw from the bank in the
first period, then the bank will be unable to provide enough funds to
pay everyone.
Let the exogenous run probability be s. Then depositors will only
deposit at the bank if their expected utility from doing so is greater
than the utility they would receive in autarky, such that

Es [W ] = (1− s)Wno−run + sWrun ≥WAutarky
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Initial Deposit Decisions and Sequential Service

If there is a run, then each depositor will only receive d∗1 with probability
ω
d∗

1
if there is a total suspension of convertibility, so

Wrun = ω

d∗1
u(d∗1 )

While in the no-run equilibrium, individuals will expect to receive
Wno−run = W (d∗1 , d∗2 ).
If Wrun < WAutarky and if s is made sufficiently large, Es [W ] < WAutarky
and the depositor will choose not to deposit (and instead accept the
illiquid autarky scenario). However, for low enough s, depositors may
tolerate the possibility of runs.

ECON 4905 (Cornell University) Bank Runs October 5, 2016 15 / 16



Interpreting the Post-Deposit Game

Now we know there exist 2 equilibria in the post-deposit game, one
non-run, the other run. One of the equilibria is the “good” non-run
equilibrium. Because the post-deposit game is Baysian Incentive
Compatible but not Dominant Strategy IC, the other equilibrium is a bad
one, the run-equilibrium.
The so-called “optimal contract” for the post-deposit game does not lead
to a uniquely implementable equilibrium. This is because the “optimal
contract” is based on unconstrained optimization in which a depositor’s
type is public knowledge, or at least known by the bank.
This would imply a source of financial fragility... but will depositors choose
to deposit at the bank to begin with?
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