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Introduction. The recent Nobel prizes in economics awarded to financial economists 
confirmed the transition that finance has undergone in the past thirty years, moving from 
being what one wag called a taxonomy of anecdotes to being one of the more tangential 
and "softer" areas of economics to occupy center stage. Finance has come of age as 
a science in large part through the application of the work of Wiener and the other 
pioneers of the theory of stochastic processes. Diffusion processes have become part of 
the vocabulary of modern finance. 

Accompanying this intellectual transformation has been a rare for the social sciences 
embracing of the practical significance—the engineering side—of finance. A recent article 
in Scientific American takes note of the hundreds of mathematicians and physicists who 
have moved to Wall Street, where they make use of quite advanced techniques in applied 
mathematics that lie at the heart of what has become a $50 trillion industry. If one were 
to look for the new applications of mathematics one would be hard pressed to find an 
area where the impact has been more certain or more significant. 

What I would like to do in this short paper is to give the reader a sense of what this 
is all about. What is happening on Wall Street and what are these mathematicians and 
physicists doing? What are the major research paradigms and what comes next? 

The derivatives pricing problem—Call options. The central problem of modern 
finance is the valuation of assets and the streams of cash flows that they generate over 
time. These flows are generally uncertain and, as such, they are modelled as stochastic 
processes. 

The best place to start is with a problem—indeed, the canonical problem of option 
pricing theory—that of valuing a call option on a share of stock. An option is a contract 
that gives its holder certain rights. A call option confers on the holder the right to 
purchase a share of stock on a certain date in the future and for a fixed price called 
the exercise or strike price. The terms of such contracts vary. American options can 
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be exercised at any time up to their expiration, whereas European options can only be 
exercised at a fixed date in the future. We will focus on European options. 

An option is an example of a derivative. This term is used to emphasize that the 
option derives its value from the value of something else, in this case a share of stock, 
that underlies it and is primitive to the option. 

Letting S denote the price of a share, K the strike price of ;he option, and T its 
maturity, Figure 1 displays the familiar "hockey stick" value of this option at maturity, 
T, as a function of the terminal stock price at that time, ST. 

Call Value at T 

0 ST 

FIG. 1 
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Butterfly Spread Value at T 

x (x+y)/2 

FIG. 2 

1. The binomial approach. We know what the option is worth when it matures. 
Introducing some notation, we will let C denote the value of the option, and let t denote 
the time variable. At termination, t = T, the value of the call is given by 

C = max[ST — K,0). 

But, how do we determine the value C t  for t < T? 
While it is possible to find some process-free bounds for C t—for example, we know a 

priori that C(t) < S(t)—in general we expect that C t  will depend upon the movement 
of the stock price over time, i.e., the stochastic process that describes the motion of S t . 

Moreover, since at termination the option value depends on the stock price, it follows 
that at time t <T its value will generally depend on any variables that are stochastically 
related to the distribution of the stock value at time T. The simplest interesting process 
is the binomial process in which the stock price moves on a discrete lattice going either 
up or down by a proportionate discrete amount at each node of the lattice. This process 
is depicted in Fig. 3. 

The tree in Fig. 3 displays the evolution of the information process that underlies the 
model. Each limb represents a particular resolution and refinement of that uncertainty. 
With obvious notation, suppose the process is at node (t, S). At time t + 1 the stock 
price has to change to either the up value, aS, or the down value bS, where b < a. This 
proportionate change tree is used—rather than an absolute tree with fixed changes—to 
avoid the possibility of the stock's price becoming negative. 

Writing the value of the option as a function of time and the stock value, C(t, S), it 
is clear that, like the stock, C(t, S) will follow the binomial process illustrated in Fig. 4 
(see p. 699). In addition to the stock and the option, we will also assume that a risk free 
bond is traded and, for simplicity, we will let it carry a fixed interest rate of r in each 
period. In other words, 1 dollar lent out from period t to t +1 will be worth 1 +r dollars 
at time t + 1. 
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Binomial Tree 

(t,S) 

(t + 2,a S) 

(t + 2, bS) 

(t+ 1,bS) 1-pi 

(t + 2,bbS) 

FIG. 3 

We will assume that the bond, the stock, and the option al trade in liquid marketS 
with no frictions or costs. To solve the problem of determining the value of the optior, 
typically economists would make some further assumptions necessary to create a model 
of demand and supply, the solution to which would be the equilibrium price of the optio 
Such a model would make use of investors' preferences towards risk to construct a dema 
curve for the option. Presumably, for example, since an option receives a zero payoff if t 
matures out of the money, i.e., if ST < K, options are riskier than stocks and, a priori, 
would expect that economies filled with more risk-averse investors would bid down t e 
prices of options compared to economies with more risk-tolerant investors. Fortunate) , 
for both the theory and the practice of option pricing, this is not the path that we w 11 
follow. There is a detour to a quicker and far more elegant solution. 
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C ( S , t ) 

C(aS,t +1) 

C(bS4 +1) 

FIG. 4 

An investor in this world has a variety of possible decisions open, including borrowing, 
lending, or dividing investments in some proportion among all three of these possibilities. 
Begin by considering the choice between stocks and bonds. An investment of $1 in the 
stock will either be worth b or a at time t + 1. An investment in the bond will be worth 
1 + r in either case. Clearly, if b > 1 + r, then the stock dominates the bond. What 
would an investor do in this case? Well this is a wonderful world to live in—in fact, 
it is too wonderful. Not merely would investors put their wealth in stocks rather than 
bonds, there is no reason to stop at that. Borrowing one dollar at the interest rate r and 
investing it in the stock will reap a minimum value of b at time t 1. Since b exceeds 
1 + r, a positive amount b — ( 1 + r) would be left to pocket as profit. Why stop there? 
If $1 will do, why not $1 million or $1 billion or more? Similarly, if b = 1 + r, then 
borrowing to buy the stock is sure to never lose and to return a positive gain on the 
up (state a) leg. This is a truly "no lose" situation—a bit like the arguments of those 
who would have you put all of your investments in stocks because "stocks always beat 
bonds". 

Such a situation is called an arbitrage possibility, and, unfortunately, neither the 
real world nor any economic model of equilibrium allows such things. Very quickly any 
temporary appearance of an arbitrage will be closed down by the funds it attracts. There 
is a joke told in introductory finance classes that captures the matter quite well. The 
student and the professor are walking down the hall and they see a $20 bill on the ground. 
The student bends down to pick it up and the professor says, "Don't bother, if it was 
really there, someone else would have picked it up already." 

A similar situation in reverse arises if 1 + r > a, in which case the bond dominates 
the stock and there would be no demand for the stock. Hence, the absence of arbitrage, 
or "no arbitrage" for short implies that we must have b < 1 + r < a. 

Of course, investors are not required to put all of their portfolio into either the stock 
or the bond; they can divide their wealth between the two. Suppose that at node (S, t) 
the investor forms a portfolio with x invested in the stock and 1 — x loaned out at the 
rate r. The gross return on the portfolio is the linear combination of the return on the 
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stock, a or b, and that from the loan, 1 + r. In state a, the port .lio returns 

xa + (1 — x)(1 + r) 

and in state b it returns 

xb + (1 — x)(1 + r). 

By comparison, $1 invested in the option purchases 1/C(S, options at time t. In 
state a, at time t + 1, each option has the value C(aS, t + 1) pro, ucing a total return of 

C(aS,t +1)1C(S,t) 

and in state b the total return is 

C(bS, t + 1)/C(S, t). 

Since we are free to choose any investment proportion, x, w wish, suppose that we 
choose x in such a way as to make the portfolio and the option I ave the same return in 
state b: 

xb + (1 — x)(1 + r) = C(bS,t +1)1C(S,t 

which implies that 

x =- 
(1 + r) — C(bS,t  +1)1C(S,t) 

--  
(1+ r) — b 

But, if the portfolio has the same return as the option in state b, then what can w 
say about its return in state a? Recall the argument compari g the returns on a uni 
investment in the stock with lending and borrowing. The sa e line of reasoning no 
applies to the comparison between the portfolio we have just co tructed and the optio 
If the portfolio beats the option in state a, then why would anyone buy the option. 
In fact, rather than holding the option, investors would issue (sell) options and use t 
proceeds to buy the portfolio earning an arbitrage profit. 

Conversely, suppose that the option beats the portfolio in state a. In this case We 
would reverse the investment in the portfolio, i.e., borrow ( — x) and purchase —
dollars of stock, which is the same as "shorting" x worth of st ck. This would generate 
$1 in cash, which could be invested in the option. Paying back he loans on this reversed 
portfolio would thereby produce a zero net return in state b an a positive return in state 
a. If shorting a portfolio seems mysterious there is an alternat e way to make the sa e 
point. We can work through the algebra to show that if the option's returns in sta e 
a exceed the portfolio's, then a new portfolio composed of le ng and investing in t e 
option could be constructed that would dominate the stock. ence, investors would ,11 
prefer this portfolio to holding the stock, which would also be an arbitrage opportunity. 

To prevent arbitrage, then, we are forced to require that if he portfolio has the same 
return as the option in state b then it must also be the same i state a, 

xa + (1— x)(1 + r) = C(aS,t + 1)/C( t). 

securities must lie on a Figure 5 displays this result geometrically. Clearly, all thr 

common line to prevent arbitrage. 



(C(bS,t +11/CIS,t),C(aS,t + 11/C(S,t)) 

(b,a) 

(1 + r,1 +r) 

State b 0 

FIG. 5 
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State a 

Putting these results together produces a difference equation that the option value 
must satisfy, 

ir*C(aS,t + 1) + (1— ir*)C(bS,t + 1) — (1 + r)C(S, t) = 0, 

where 
* = (1 + r) — b 

7r  
a — b 

It is easy to solve this equation by working backward recursively from the boundary 
value, 

C(S, T) = max(S — K, 0), 

C(S,t) = (1 + 107,_t  E 7r *i (1 — 7*) (T-t-3) (Sa3 b(T-t- i )  — K)+, 

where the superscript + indicates the positive part. 
There is something unexpected and remarkable about this result. Notice that the 

probability of an up jump, 7, does not appear in the difference equation and, therefore, 
it does not show up in the solution. Consider what this means. Take two stocks that 
both follow binomial processes and that are not perfectly correlated. Further, suppose 
that the stocks differ only in that one has a much higher probability of an up jump than 
does the other. If our analysis is to be believed, then when the stock prices of each are 
equal the two option values will be equal! How can this be? How can the value of an 
option on a stock be independent of the probability that the stock will go up? 

The resolution of this paradox lies in yet another paradox. If it is all that clear that the 
option on the process with the higher probability of an up jump should be more valuable, 
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then why is not the stock itself more valuable? After all, the stock is an option with a 
zero strike price. By fixing the price of the two stocks to be equal we are implicitly saying 
that the market values the future development of the stocks equally. In equilibrium the 
prices already reflect the fact that one has a better chance of rising than the other; hence, 
there must be some implicit rationale for valuing them equally. This same implicit force 
is what equates the two option values. 

The diffusion model—Black-Scholes. While the binomial model is the simplest 
derivation of the theory of option pricing, historically, it was preceded by a derivation in 
the mathematically more complex setting of a continuous-time model of uncertainty. 

Letting the binomial process converge to a log-normal version of a continuous-time 
diffusion process yields 

dS = AS dt o -S dz, 

where p is the local drift and o-  is the local speed or standard dev ation of the continuous-
time process. 

Similarly, the difference equation becomes a partial differential equation, 

1 0.2 s2 css r SCs — rC = —Ct  

with a solution—subject to appropriate boundary conditions 	that is the limit of the 
discrete binomial solution, 

C(S, t) = SN(d1) — e —r(T—t1 N(d2), 

where N denotes the cumulative normal distribution function, and 

ln(S/K) + (r  +  2 o-2 )(T — t) 
d1 = 	 , a(T —0 1 /2  

d2  = di. — o- (T — t) 1 / 2  . 

This is the famous Black-Scholes differential equation first discovered by Fischer Bla 
and Myron Scholes [1973] and developed and studied by Bob Merton [1973] nearly 5 

 

years ago while they were all new faculty members at MIT. Like the binomial model fiat 
analyzed by Cox, Ross, and Rubinstein [1979], the continuous-time model has a simil r 
paradox; notice that the mean return, p, has no impact on the option value. 

In both of these models the paradox provides a clue to the solution. Since the soluti n 
does not depend on deep parameters, and follows from arbitrage alone, it follows that tile 
same solution would prevail in any economic equilibrium. In particular, the solution is 
the same as would occur in a world where investors were risk neutral and cared only about 
expectations. This is called the risk neutral or martingale approach and it is equivalent 
to valuing the option as the expected discounted terminal value using the risk-adjusted 
measure. Referring back to the binomial model, the constant, ir*, is a probability, which 
is to say, that it is positive and less than one. It is, in fact, the very risk-adjusted 
probability that we are talking about and an examination of the solution to the binomial 
model reveals that it is simply the discounted expected value of the option at maturity 
using ir* as the probability of an up jump. In continuous time, the diffusion process 

with drift r dt is the proper risk-adjusted measure and the solution to the Black-Scholes 
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equation is the discounted expected value of the option at maturity using the probability 
for the stock price generated by this adjusted process (see Cox and Ross [19761). 

This analysis—called the risk neutral or martingale analysis—has become the work-
horse for derivative pricing and has led to myriad innovations in the field. It has also 
sparked the interest of probabilists and all manner of mathematicians. 

The absence of the probabilities in the binomial model and the drift in the continuous- 
.  time model is of immense practical significance. Indeed, were this not so, the theory 

would be robbed of much of its importance. Both the mean and the jump probabilities 
are very difficult to measure accurately in practice. For a stock with an annual standard 
deviation for its returns of 40% and a mean of 10% it would take 64 years of observing 
returns before we could be assured statistically with probability of .95 that the mean was 
actually even positive. 

By contrast, we can, in principle, measure the speed, o , of the process with arbitrary 
precision by sampling more densely within in any finite interval without any need to 
extend the time period of observation. This eliminates the need to reconcile any divergent 
views that investors might have about the future prospects for the stock or primitive 
assets. It also means that the theory can accommodate quite complex stochastic drifts, 

Solved and unsolved problems. 
Two "solved" problems: The term structure and integral approaches to optimization. 

Research in derivatives pricing has exploded at such a pace that there are now numerous 
new journals struggling to keep up, and in a short space it is impossible to do more than 
select some examples of what has been accomplished and what looms as important and 
unsolved. 

One area that has attracted an enormous research focus is the theory of the term 
structure of interest rates. The term structure of interest rates, by which I mean the 
time profile of interest rates on bonds of different maturities, say, one year, two year, and 
so forth, can now be modelled in a rigorous fashion. By breaking the movement of the 
term structure into independent factors or Markov state variables and treating bonds 
themselves as derivatives whose value is conditional on the movement of interest rates, 
this theory has proven immensely successful. Figure 6 illustrates a common breakdown of 
the movement of the term structure into three basis factors each of which moves according 
to some specified stochastic process. At a practical level this approach has allowed us to 
price and create all manner of interest-dependent securities from mortgages to convertible 
bonds. 

Another area of great success has been the development of integral or complete market 
approaches to optimization. This is sometimes called optimization without dynamic 
programming. We can do little more than outline the approach here. Consider the 
problem of maximizing the expected value of some integral of a function of a diffusion at 
some future date, T: 

max I U(x(T))dFx(T) 
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Basic Factors in the Term Structure 
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FIG. 6 

where the maximization is over some control variables such the proportion invested 
in stocks or bonds at time t E [0, T] and s denotes the state of nature at time T, e.g., in 
a Markov diffusion, the value of the stock price S(T) at time , or, more generally, the 
entire path of the underlying state variables up to T. Typicall we would attack this y 
dynamic programming techniques. Here is another approach. From our previous wo k 
we know that we can, in effect, purchase any pattern of pay ents x(T) as a functi n 
of the disconnected martingale probabilities, Ir*(s,T), that rescribe the risk-adjust d 
probabilities of being in a certain state s at time T. The onl constraint is that we not 
exceed our initial wealth, wo, 

J x(s,T) dr* (s,T) = wo. 

But this implies that the optimal solution is an option, 

* x(s , = 	(A —d7r  
dF 

where the Radon-Nikodym derivative is just a function of t i e terminal state, say the 
stock price, S(T), and A is a Lagrange multiplier. 

Now we have described the solution to our problem as n option whose terminal 
value x(s , T) = f (S(T)), and we can use the pricing theo developed earlier to f ly 
characterize the solution. This approach works in quite co plex problems where, for 
example, U(.) is messy and the differential equations of dyna is programming are hi ly 
nonlinear. 

Two unsolved problems: The American put and other ee boundary problems and 

spanning by options. The option problem we solved above was a European call option. 
A European call can only be exercised at maturity. By contrast, an American call can be 
exercised at any time up to and including the maturity date. Sometimes this distinction 
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does not matter; if the stock pays no dividend then the two are identical because it would 
never pay to prematurely exercise the call. If the stock pays a dividend, though, early 
exercise may be optimal. Similarly, an American put will always be exercised early if the 

stock price is low enough. 
• 	A put gives the holder the right to sell the stock for a fixed amount or exercise price, 

K. Clearly, if the stock becomes nearly worthless at some time t < T, the time the put 
expires, it will pay to exercise the put, collect K — S(t), and earn interest on this amount 
rather than wait till T. In both the case of the call on the dividend-paying stock and 
the put on a stock, whether dividend-paying or not, there is an optimum boundary at 
which to exercise. This optimal choice of the boundary is unsolved except in a handful 
of special cases and these are classic examples of what are called free boundary problems 
in the theory of differential equations. While numerical analyses are available, a full 
treatment is not and very little is known about the general theory of such problems. 

Understanding these will lead to a better understanding of an equally deep and as 
yet unresolved issue. We do not know how rich is the space of all contracts that can be 
spanned in some appropriate sense by derivative securities. A contract is really just a 
bundle of contingent statements and payments. We are working to develop a theory that 
would allow us to break these contracts into their component parts and the roles played, 
for example, by American versus European derivatives as bases for such a construction 
is not yet resolved. In a sense, this is the financial economists' version of the biologists' 
effort to map the structure of DNA and one can only begin to imagine what we would 
learn from it. 

Conclusion. The Black-Scholes differential equation is the backward equation for this 
process, and this particular equation is a transformation of the heat equation. The call 
option valuation problem is a boundary value problem and little more needs to be said 
about why Wall Street wants to hire physicists and mathematicians. All of the contracts 
currently traded are variations of the two simple models presented today. Since most are 
too complex for closed form solutions, they are solved using risk neutral versions of the 
binomial model or related discrete time models. (In fact, the solutions are Feynman-Kac 
integrals, which are generally solved by numerical or Monte-Carlo techniques.) 

How well does this theory work? I once worked on a consulting project for a company 
that wanted a statistical estimate of the demand for Scotch whiskey in Massachusetts. 
Armed with the latest techniques in econometrics and statistics, I gathered the data, 
ran my regressions and estimated the demand curve. Try as I could, I could not get 
that curve to slope downward. The higher the price of Scotch, the more people drank. 
This was a disillusioning but by no means unusual exercise in empirical economics. By 
contrast, if you open up the newspaper and look at the option tables, the formulas in 
this paper come within small change of the quotes. And, the signs are all correct! 

This close interplay between data and theory is characteristic of science and it char-
acterizes modern finance. Equally characteristic is the exciting work yet to be done. 
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