The Economics of Uncertainty

Lecture 5
Econ 4905, Fall 2016
The Economics of Uncertainty

• The state of nature: S

• Realizations: $s_1, s_2, ...$

• Intrinsic Uncertainty
 • Random fundamentals
 • Examples
 $$s_1 = \text{rain}, \quad s_2 = \text{drought}$$
 $$s_1 = \text{hot}, \quad s_2 = \text{cold}$$

• Extrinsic Uncertainty
 • Randomness that does not effect the fundamentals, but does affect outcomes
 • Examples
 $$s_1 = \text{no run}, \quad s_2 = \text{run}$$
 $$s_1 = \text{sunspots}, \quad s_2 = \text{no sunspots}$$
Expected Utility

• von Neumann and Morgenstern
 • Expected Utility
 • $V = \pi(s_1)u(x(s_1)) + \pi(s_2)u(x(s_2))$
 • $\pi(s_1) = 1 - \pi(s_2)$
 • $V = \int u(x(s))\pi(s)ds$
 • Risk aversion:
 • $u(x)$
 • $u'(x) > 0$
 • $u''(x) < 0$ Risk-averse
 • Risk-neutral
 • $u''(x) = 0$
 • Risk-loving
 • $u''(x) > 0$
Arrow-Debreu

• Isomorphism
 • Contingent-claims
 • Securities
F – Fire, N – no fire, E – expected value

\[u(x) = \pi(F)u(F) + \pi(N)u(N) \]
Lecture 5, Slide 6

- **CRRA**
 - Kenneth Arrow
 - John Pratt
 - \(u(c) = \frac{c^{1-\gamma}}{1-\gamma} \)
 - For \(\gamma = 1 \), define \(u(c) = \log(c) \)
 - \(u'(c) = \left(\frac{1-\gamma}{1-\gamma} \right) c^{-\gamma} = c^{-\gamma} > 0 \)
 - \(u''(c) = -\gamma c^{-\gamma-1} < 0 \)
- **Risk-aversion**
 - \(- \frac{cu''(c)}{u'(c)} = \frac{\gamma c^{-\gamma-1} \cdot c}{c^{-\gamma}} = \frac{\gamma c^{-\gamma}}{c^{-\gamma}} = \gamma \)
Profit Maximization

- **NOT** an axiom
- Theorem, requiring assumptions
- Perfect markets
Robinson Crusoe

PPF

Fish

Coconuts
Lecture 5, Slide 9

Robinson Crusoe

$u = \text{const.}$

Supporting Price Ratio

$Fish$ $Coconuts$
Robinson Trades

Graph showing the trade-off between Fish and Coconuts.
• Produces to market. Profit max
 • In order to max utility

• Dynamic extension
 • Max PDV
 • If borrowing and lending are perfect

• Uncertainty extension
 • Max contingent-claim profit
 • If insurance is perfect