1 Money Taxation

Consider an economy with a single commodity, \(\ell = 1 \), chocolate. There are 5 consumers, so \(n = 5 \). The endowments are defined as

\[
\omega = (\omega_1, \omega_2, \omega_3, \omega_4, \omega_5) = (50, 40, 30, 20, 10)
\]

1.1 A Single Currency

There is one money. The chocolate price of money is \(P^m \geq 0 \). In each of the following cases, solve for the set \(\mathcal{P}^m \) of equilibrium prices \(P^m \), given the following tax policies \(\tau \). Provide the units in which the variables are measured.

a) \(\tau = (\tau_1, \tau_2, \tau_3, \tau_4, \tau_5) = (1, 1, 0, 0, -2) \)

b) \(\tau = (10, 5, 0, -8, -7) \)

c) \(\tau = (20, 2, 1, -2, -20) \)

1.2 Two Monies

Consider a scenario where there are 2 monies, red dollars \(R \) and blue dollars \(B \), with respective chocolate prices of money, \(P^R \geq 0 \) and \(P^B \geq 0 \).

In each of the following cases, solve for the equilibrium exchange rate between \(B \) and \(R \). Do these depend on the endowments \(\omega \)? Give the economic explanation for your answer.

a) \(\tau^R = (1, 1, 0, 0, -2) \) and \(\tau^B = (1, 0, 0, 0, -2) \)

b) \(\tau^R = (1, 1, 0, -1, -2) \) and \(\tau^B = (1, 1, 0, -2) \)

c) \(\tau^R = (3, 2, 1, 0, -6) \) and \(\tau^B = (4, 0, -1, -1, -2) \)

1.3 The Absence of Money Illusion

Explain the difference between the “absence of money illusion” and the “quantity theory of money”. Be precise (with symbols).