ECON 6130-2: Lecture 7

November 7, 2016
Next reading for ECON 6130-2:

Overlapping Generations, Worked Example 2

2 period lives.
1 commodity per period, \(\ell = 1 \).
Stationary endowments:

\[
\omega_0^1 = 10 \text{ for } t = 0 \\
(\omega_t^t, \omega_{t+1}^t) = (10, 10) \text{ for } t = 1, 2, ...
\]

Stationary preferences:

\[
u_0(x_0^1) = 10 \log x_0^1 \text{ for } t = 0 \\
u_t(x_t^t, x_{t+1}^t) = 2 \log x_t^t + 10 \log x_{t+1}^t \text{ for } t = 1, 2, ...
\]

\[
m_0^1 = 1 \quad m_t^s = 0 \text{ otherwise}
\]

Present goods price of money is \(p^m \geq 0 \).
The indifference curve (IC) running through the endowment is

\(\{(x_t^t, x_t^{t+1}) : 2 \log x_t^t + 10 \log x_t^{t+1} = 2 \log 10 + 10 \log 10 = 12 \log 10\} \)

Exponentiating both sides to derive an analytical expression for graphing,

\[
(x_t^t)^2(x_t^{t+1})^{10} = 10^{12}
\]

\(\Leftrightarrow (x_t^{t+1})^{10} = \frac{10^{12}}{(x_t^t)^2} \)

\(\Leftrightarrow x_t^{t+1} = \frac{10^{6/5}}{(x_t^t)^{2/5}}. \)
Graphically:

\[x^{t+1} \]

\[x^t \]

(10,10)

IC
The slope of the IC at the endowment in \((x^t, x^{t+1})\) space is

\[
\frac{dx^{t+1}_t}{dx^t_t} = - \frac{\partial u_t(x^t_t, x^{t+1}_t)}{\partial x^t_t} \bigg/ \frac{\partial u_t(x^t_t, x^{t+1}_t)}{\partial x^{t+1}_t} \\
= - \frac{2}{x^t_t} \bigg/ \frac{10}{x^{t+1}_t}
\]

Evaluated at the endowment,

\[
\frac{dx^{t+1}_t}{dx^t_t} \bigg|_{(10,10)} = - \frac{2}{10} \bigg/ \frac{10}{10} \\
= -1/5
\]
Samuelson Case

The corresponding interest rate indicates we are in the Samuelson case:

\[
\frac{\partial u_t(\omega_t^t, \omega_t^{t+1})}{\partial x_t^t} \frac{\partial u_t(\omega_t^t, \omega_t^{t+1})}{\partial x_t^{t+1}} = 1 + r
\]

\[
\Leftrightarrow \frac{1}{5} = 1 + r
\]

\[
\Leftrightarrow r = -\frac{4}{5} < 0
\]
We next derive the reflected offer curve (ROC) in terms of Mr. t’s excess demand. Define

$$z^t = (\omega^t_t - x^t)$$

and

$$z^{t+1} = (x^{t+1}_t - \omega^{t+1}_t).$$
Optimality Condition

Taking first order conditions and dividing through yields the following optimality condition:

\[
\frac{p_t}{p_{t+1}} = \frac{1}{5} \frac{x_{t}^{t+1}}{x_{t}^{t}}
\]

Plugging into Mr. t’s the budget constraint, we derive the following ROC:

\[
z_{t+1} = \frac{(2)(10)z^t}{(10)(10) - (10 + 2)z^t} = \frac{20z^t}{100 - 12z^t}
\]

Equating \(z_{t+1} = z^t\) yields \(100 - 12z^t = 20 \iff z^t = 20/3.\)
Reflected Offer Curve
Dynamics for $p^m < \bar{p}^m$
Global Dynamics

\[z^{t+1} \]

\[\bar{p}^m = \frac{20}{3} \]

NM

ROC

RC
There are two stationary states:
(a) The non-monetary (non-PO) steady state with $z^t = z^{t+1} = 0$ (i.e., autarky), labeled NM.
(b) The monetary (PO) steady state with $z^t = z^{t+1} = \bar{p}^m = \frac{20}{3}$, labeled M.

The non-monetary steady state is locally stable. The monetary steady state is unstable. If $0 < p^m < \bar{p}^m$, the economy is inflationary. The current goods price of money tends asymptotically to zero. The money bubble fades away, but it does not burst.
If $p^m > \bar{p}^m$, the economy is deflationary. The current goods price of money grows so that in finite time demand for goods exceeds supply, so the deflationary bubble must burst (in finite time) since $x_{t-1}^t + x_t^t > \omega_{t-1}^t + \omega_t^t$, i.e. the demand for goods excess supply, see the phase diagram. The hyper-deflationary path does not satisfy long-run perfect foresight. The bubble must burst in finite time.
Overlapping Generations, Worked Example 3

2 period lives.
1 commodity per period, \(\ell = 1 \).
Stationary endowments:

\[
\omega_0^1 = 3 \text{ for } t = 0 \\
(\omega_t^t, \omega_{t+1}^t) = (3, 3) > 0 \text{ for } t = 1, 2, \ldots
\]

Stationary preferences:

\[
u_0(x_0^1) = \log x_0^1 \text{ for } t = 0 \\
u_t(x_t^t, x_{t+1}^t) = 10 \log x_t^t + \log x_{t+1}^t \text{ for } t = 1, 2, \ldots
\]

Taxation:
Two monies, R and B

\[
m_0^{R,1} = 5, \quad m_0^{B,1} = -2 \quad m_t^{R,s} = m_t^{B,s} = 0 \text{ otherwise}
\]

Present goods prices of money are \(p^{R,t} \geq 0, \quad p^{B,t} \geq 0 \).
The indifference curve (IC) running through the endowment is characterized by

\[\{ (x_t^t, x_{t+1}^t) : 10 \log x_t^t + \log x_{t+1}^t = 10 \log 3 + \log 3 = 11 \log 3 \} \]

Exponentiating both sides to derive an analytical expression for graphing,

\[(x_t^t)^{10} (x_{t+1}^t) = 3^{11} \]

\[\Leftrightarrow (x_{t+1}^t) = \frac{3^{11}}{(x_t^t)^{10}} \]
Graphically:

\[x^{t+1} \]

\[x^t \]

(3,3)

IC
The slope of the IC at the endowment in \((x^t, x^{t+1})\) space is calculated as follows:

\[
\frac{dx_{t}^{t+1}}{dx_{t}^{t}} = - \frac{\partial u_t(x^t, x^{t+1})}{\partial x_{t}^{t}} \cdot \frac{1}{\frac{\partial u_t(x^t, x^{t+1})}{\partial x_{t}^{t+1}}}
\]

\[
= - \frac{10}{x^t} / \frac{1}{x^{t+1}}
\]

Evaluated at the endowment,

\[
\left. \frac{dx_{t}^{t+1}}{dx_{t}^{t}} \right|_{(3,3)} = - \frac{10}{3} / \frac{1}{3}
\]

\[
= -10
\]
The corresponding interest rate indicates we are in the Ricardo case:

\[
\frac{\partial u_t(\omega_t^t, \omega_t^{t+1})}{\partial x_t^t} = \frac{\partial u_t(\omega_t^t, \omega_t^{t+1})}{\partial x_t^{t+1}} = 1 + r
\]

\[\Leftrightarrow 10 = 1 + r\]

\[\Leftrightarrow r = 9 > 0\]
ROC

We next derive the reflected offer curve (ROC) in terms of Mr. \(t \)'s excess demand. Again define

\[z^t = (\omega_t^t - x_t^t) \]

and

\[z^{t+1} = (x_t^{t+1} - \omega_t^{t+1}). \]

Taking first order conditions and dividing through yields the following optimality condition:

\[
\frac{p_t^t}{p_t^{t+1}} = \frac{10}{1} \frac{x_t^{t+1}}{x_t^t}
\]

Plugging into Mr. \(t \)'s the budget constraint, we derive the following ROC:

\[
z^{t+1} = \frac{(10)(3)z^t}{(1)(3) - (1 + 10)z^t}
\]

\[= \frac{30z^t}{3 - 11z^t}\]
ROC in the Ricardo Case

Graphically:

\[
\begin{align*}
\text{ROC} & \quad \text{RC} \\
\text{NM} & \quad z^t
\end{align*}
\]
Non-Monetary Steady State

There is only one stationary equilibrium for this Ricardo economy:
(a) The non-monetary (PO) steady state with \(z^t = z^{t+1} = 0 \) (i.e., autarky), labeled NM. From the budget constraint of the initial old generation, we have

\[
\begin{align*}
 z_1^1 &= m_0^{R,1}P^R + m_0^{B,1}P^B \\
 0 &= 5P^R - 2P^B \\
 P^B &= \frac{5}{2}P^R
\end{align*}
\]

The non-monetary steady state is locally stable.
Similarly, there is no non-stationary equilibrium.