Econ 4905: Lecture 7 Bank Runs: The Pre-Deposit Game

Karl Shell

Cornell University

Fall 2017

Introduction to Bank Runs

- Bryant (1980) and Diamond and Dybvig (1983): "bank runs" in the post-deposit game
 - multiple equilibria in the post-deposit game
- One cannot understand bank runs or the optimal contract without the full pre-deposit game
- Peck and Shell (2003): A sunspot-driven run can be an equilibrium in the pre-deposit game for sufficiently small run probability.
- ► We show *how* sunspot-driven run risk affects the optimal contract depending on the parameters.

The Model: Consumers

- ▶ 2 ex-ante identical vNM consumers and 3 periods: 0, 1 and 2.
- Endowments: y
- ▶ Preferences: $u(c^1)$ and $v(c^1+c^2)$:
 - impatient: $u(x) = A \frac{(x)^{1-b}}{1-b}$, where A > 0 and b > 1.
 - patient: $v(x) = \frac{(x)^{1-b}}{1-b}$.
- Types are uncorrelated (so we have aggregate uncertainty.):
 p

The Model: Technology

► Storage:

$$t = 0$$
 $t = 1$ $t = 2$
-1 1
-1 1

More Productive

$$t = 0$$
 $t = 1$ $t = 2$
-1 0 R

The Model

- ► Sequential service constraint (Wallace (1988))
- Suspension of convertibility.
- ▶ A depositor visits the bank only when he makes withdrawals.
- ▶ When a depositor makes his withdrawal decision, he does not know his position in the bank queue.
- If more than one depositor chooses to withdraw, a depositor's position in the queue is random. Positions in the queue are equally probable.
- Aggregate uncertainty

Post-Deposit Game: Notation

- $c \in [0, 2y]$ is any feasible banking contract
- ▶ $\hat{c} \in [0, 2y]$ is the unconstrained optimal banking contract
- $c^* \in [0, 2y]$ is the constrained optimal banking contract
- ▶ Smaller c is conservative; larger c is fragile

Post-Deposit Game: c^{early}

▶ A patient depositor chooses early withdrawal when he expects the other depositor to also choose early withdrawal.

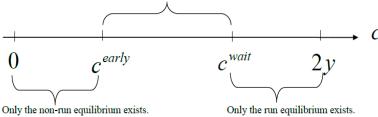
$$[v(c) + v(2y - c)]/2 > v[(2y - c)R]$$

▶ Let c^{early} be the value of c such that the above inequality holds as an equality.

Post-Deposit Game: cwait

 A patient depositor chooses late withdrawal when he expects the other depositor, if patient, to also choose late withdrawal. (ICC)

$$pv[(2y-c)R] + (1-p)v(yR) \ge p[v(c)+v(2y-c)]/2 + (1-p)v(c).$$


▶ Let c^{wait} be the value of c such that the above inequality holds as an equality.

Post-Deposit Game: "usual" values of the parameters

 $ightharpoonup c^{early} < c^{wait}$ if and only if

$$b < \min\{2, 1 + \ln 2 / \ln R\}$$

The post-deposit game has two equilibria: one run and one non-run.

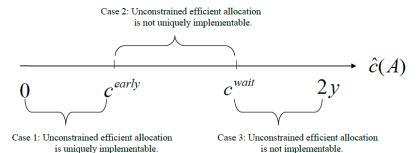
Pre-Deposit Game

- ► For the rest of the presentation, we focus on the "usual" values of *b* and *R*.
- ▶ Whether bank runs occur in the *pre-deposit* game depends on whether the optimal contract c^* belongs to the region of strategic complementarity (i.e., $c \in (c^{early}, c^{wait}]$).
- ▶ To characterize the optimal contract, we divide the problem into three cases depending on \hat{c} , the contract supporting the unconstrained efficient allocation.
 - $ightharpoonup \widehat{c} \le c^{early} \text{ (Case 1)}$
 - $ightharpoonup \widehat{c} \in (c^{early}, c^{wait}]$ (Case 2)
 - $ightharpoonup \widehat{c} > c^{wait}$ (Case 3)

Impulse parameter A and the 3 cases

 $ightharpoonup \widehat{c}$ is the c in [0, 2y] that maximizes

$$\widehat{W}(c) = \{ p^2 [u(c) + u(2y - c)] + 2p(1 - p)[u(c) + v((2y - c)R)] + 2(1 - p)^2 v(yR) \}.$$


$$\widehat{c} = \frac{2y}{\{p/(2-p) + 2(1-p)/[(2-p)AR^{b-1}]\}^{1/b} + 1}.$$

 $ightharpoonup \widehat{c}(A)$ is an increasing function of A.

Parameter A and the 3 Cases

Neither c^{early} nor c^{wait} depends on A

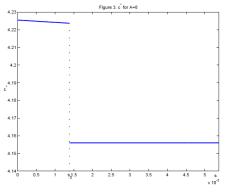
Figure 2. Three Cases

Example

▶ The parameters are

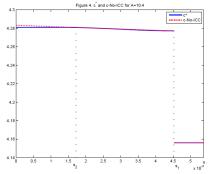
$$b = 1.01$$
; $p = 0.5$; $y = 3$; $R = 1.5$

- We see that b and R satisfy the condition which makes the set of contracts permiting strategic complementarity non-empty. We have that c^{early} = 4.155955 and c^{wait} = 4.280878.
- $A^{early} = 6.217686$ and $A^{wait} = 10.27799$.
- ▶ If $A \le A^{early}$, we are in Case 1; If $A^{early} < A \le A^{wait}$, we are in Case 2; If $A > A^{wait}$, we are in Case 3.

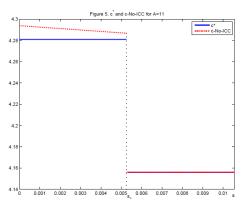

- ▶ Case 1: The unconstrained efficient allocation is DSIC, i.e., $\hat{c} < c^{early}$.
- ▶ It is straightforward to see that the optimal contract for the pre-deposit game supports the unconstrained efficient allocation

$$c^*(s) = \widehat{c}$$
.

and that the optimal contract doesn't tolerate runs.

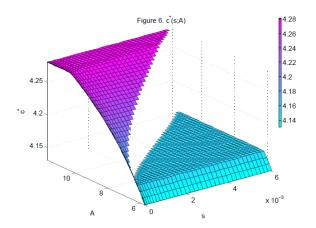

- ▶ Case 2: The unconstrained efficient allocation is BIC but not DSIC, i.e., $c^{early} < \hat{c} \le c^{wait}$.
- The optimal contract c*(s) satisfies: (1) if s is larger than the threshold probability s₀, the optimal contract is run-proof and c*(s) = c^{early}. (2) if s is smaller than s₀, the optimal contract c*(s) tolerates runs and it is a strictly decreasing function of s.

- ▶ Using the same parameters as the previous example. Let A=8. (We have seen that we are in Case 2 if $6.217686 < A \leq 10.27799$.)
- ▶ c^* switches to the best run-proof contract (i.e. c^{early}) when $s > s_0 = 1.382358 \times 10^{-3}$.



- ▶ Case 3: The unconstrained efficient allocation is not BIC, i.e., $c^{wait} < \hat{c}$.
- The optimal contract $c^*(s)$ satisfies: (1) If s is larger than the threshold probability s_1 , we have $c^*(s) = c^{early}$ and the optimal contract is run-proof. (2) If s is smaller than s_1 , the optimal contract $c^*(s)$ tolerates runs and it is a weakly decreasing function of s. Furthermore, we have $c^*(s) = c^{wait}$ for at least part of the run tolerating range of s.

- ▶ Using the same parameters as in the previous example. Let A=10.4. (We have seen that we are in Case 2 if A>10.27799.)
- c^* switches to the best run-proof (i.e. c^{early}) when $s>4.524181\times 10^{-3}$.
- ▶ ICC becomes non-binding when $s \ge s_2 = 1.719643 \times 10^{-3}$.



- ▶ Let A = 11. (PS case)
- ▶ c^* switches to the best run-proof (i.e. c^{early}) when $s > s_1 = 5.281242 \times 10^{-3}$.

The Optimal Contract

$ightharpoonup c^*$ versus s and A

Summary and Concluding Remark

- ▶ In Cases 2 and 3, the optimal contract tolerates runs when the run probability is sufficiently small:
- In Case 2, the optimal contract adjusts continuously and becomes strictly more conservative as the run probabilities increases.
 - ▶ The optimal allocation is never a mere randomization over the unconstrained efficient allocation and the corresponding run allocation from the post-deposit game. Hence this is also a contribution to the sunspots literature: another case in which SSE allocations are not mere randomizations over certainty allocations.

Summary and Concluding Remark

▶ In Case 3, the ICC binds for small run-probabilities, which forces the contract to be more conservative than it would have been without the ICC. Hence, for Case 3, the optimal contract does not change with *s* until the ICC no longer binds.

Summary and Concluding Remark

- ▶ In Case 3, the ICC binds for small run-probabilities, which forces the contract to be more conservative than it would have been without the ICC. Hence, for Case 3, the optimal contract does not change with *s* until the ICC no longer binds.
 - For small s, the optimal allocation is a randomization over the constrained efficient allocation and the corresponding run allocation from the post-deposit game.