Bank Runs: The Pre-Deposit Game

Karl Shell Yu Zhang

Cornell University Xiamen University

University of Liverpool June 2016

Introduction to Bank Runs

- Bryant (1980) and Diamond and Dybvig (1983): "bank runs" in the *post-deposit* game
 - multiple equilibria in the post-deposit game
- One cannot understand bank runs or the optimal contract without the full *pre-deposit* game
- Peck and Shell (2003): A sunspot-driven run can be an equilibrium in the pre-deposit game for sufficiently small run probability.
- We show how sunspot-driven run risk affects the optimal contract depending on the parameters.

The Model: Consumers

- ▶ 2 ex-ante identical vNM consumers and 3 periods: 0, 1 and 2.
- Endowments: y
- Preferences: $u(c^1)$ and $v(c^1 + c^2)$:
 - impatient: $u(x) = A \frac{(x)^{1-b}}{1-b}$, where A > 0 and b > 1.

• patient:
$$v(x) = \frac{(x)^{1-b}}{1-b}$$

Types are uncorrelated (so we have aggregate uncertainty.): p

The Model: Technology

Storage:

$$t = 0$$
 $t = 1$ $t = 2$
-1 1
 -1 1

More Productive

$$t = 0$$
 $t = 1$ $t = 2$
-1 0 R

The Model

- Sequential service constraint (Wallace (1988))
- Suspension of convertibility.
- A depositor visits the bank only when he makes withdrawals.
- When a depositor makes his withdrawal decision, he does not know his position in the bank queue.
- If more than one depositor chooses to withdraw, a depositor's position in the queue is random. Positions in the queue are equally probable.
- Aggregate uncertainty

Post-Deposit Game: Notation

- $c \in [0, 2y]$ is any feasible banking contract
- ▶ $\hat{c} \in [0, 2y]$ is the unconstrained optimal banking contract
- ▶ $c^* \in [0, 2y]$ is the constrained optimal banking contract
- Smaller *c* is conservative; larger *c* is fragile

Post-Deposit Game: c^{early}

 A patient depositor chooses early withdrawal when he expects the other depositor to also choose early withdrawal.

$$[v(c) + v(2y - c)]/2 > v[(2y - c)R]$$

Let c^{early} be the value of c such that the above inequality holds as an equality.

Post-Deposit Game: c^{wait}

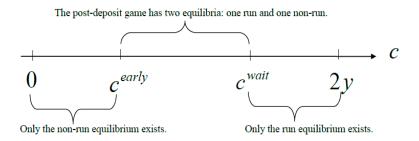
 A patient depositor chooses late withdrawal when he expects the other depositor, if patient, to also choose late withdrawal. (ICC)

$$pv[(2y-c)R] + (1-p)v(yR) \ge p[v(c) + v(2y-c)]/2 + (1-p)v(c).$$

Let c^{wait} be the value of c such that the above inequality holds as an equality. Post-Deposit Game: "usual" values of the parameters

• $c^{early} < c^{wait}$ if and only if

$$b < \min\{2, 1 + \ln 2 / \ln R\}$$



Post-Deposit Game: "usual" values of the parameters

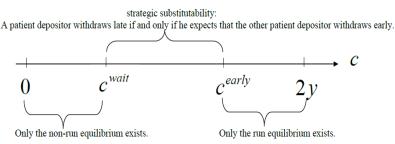
- We call these values of b and R "usual" since the set of DSIC contracts (i.e, [0, c^{wait}]) is a strict subset of BIC contracts (i.e, [0, c^{early}]).
- The interval (c^{early}, c^{wait}] is the region of c for which the patient depositors' withdrawal decisions exhibit strategic complementarity.

Post-Deposit Game: "unusual" values of the parameters

- The values of b and R are "unusual" when the set of DSIC contracts is the same as the set of BIC contracts.
- According to the Revelation Principle, when we search for the optimal contract we only have to focus on the BIC contracts.
- Hence, for the "unusual" parameters, the optimal contract must be DSIC and the bank runs are not relevant.

Post-Deposit Game: "unusual" values of the parameters

- The "unusual" values of b and R can cause $c^{early} \ge c^{wait}$.
- (c^{wait}, c^{early}] is the region of c for which the patient depositors' withdrawal decisions exhibit strategic substitutability.



 For the optimal contract, the only relevant region is [0, c^{wait}] (i.e., BIC contracts).

Figure 8. Equilibrium in the Post-Deposit Game

Pre-Deposit Game

- ► For the rest of the presentation, we focus on the "usual" values of b and R.
- Whether bank runs occur in the pre-deposit game depends on whether the optimal contract c^{*} belongs to the region of strategic complementarity (i.e., c ∈ (c^{early}, c^{wait}]).
- ► To characterize the optimal contract, we divide the problem into three cases depending on ĉ, the contract supporting the unconstrained efficient allocation.
 - $\widehat{c} \leq c^{early}$ (Case 1)
 - $\hat{c} \in (c^{early}, c^{wait}]$ (Case 2)
 - $\hat{c} > c^{wait}$ (Case 3)

Impulse parameter A and the 3 cases

• \hat{c} is the c in [0, 2y] that maximizes

$$\widehat{W}(c) = \left\{ p^2 [u(c) + u(2y - c)] + 2p(1 - p)[u(c) + v((2y - c)R)] + 2(1 - p)^2 v(yR) \right\}.$$

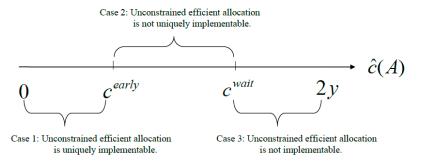
$$\widehat{c} = \frac{2y}{\{p/(2-p)+2(1-p)/[(2-p)AR^{b-1}]\}^{1/b}+1}.$$

• $\hat{c}(A)$ is an increasing function of A.

Parameter A and the 3 Cases

• Neither c^{early} nor c^{wait} depends on A





Example

The parameters are

$$b = 1.01; p = 0.5; y = 3; R = 1.5$$

 We see that b and R satisfy the condition which makes the set of contracts permiting strategic complementarity non-empty.
We have that c^{early} = 4.155955 and c^{wait} = 4.280878.

•
$$A^{early} = 6.217686$$
 and $A^{wait} = 10.27799$.

If A ≤ A^{early}, we are in Case 1; If A^{early} < A ≤ A^{wait}, we are in Case 2; If A > A^{wait}, we are in Case 3.

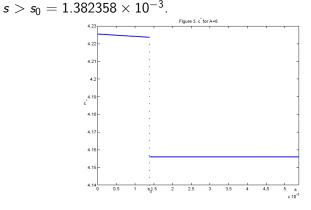
- ► Case 1: The unconstrained efficient allocation is DSIC, i.e., ĉ ≤ c^{early}.
- It is straightforward to see that the optimal contract for the pre-deposit game supports the unconstrained efficient allocation

$$c^*(s) = \widehat{c}.$$

and that the optimal contract doesn't tolerate runs.

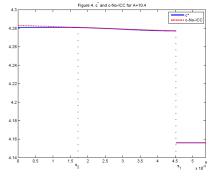
- ► Case 2: The unconstrained efficient allocation is BIC but not DSIC, i.e., c^{early} < ĉ ≤ c^{wait}.
- The optimal contract c*(s) satisfies: (1) if s is larger than the threshold probability s₀, the optimal contract is run-proof and c*(s) = c^{early}. (2) if s is smaller than s₀, the optimal contract c*(s) tolerates runs and it is a strictly decreasing function of s.

- ► Using the same parameters as the previous example. Let A = 8. (We have seen that we are in Case 2 if 6.217686 < A ≤ 10.27799.)</p>
- c^* switches to the best run-proof contract (i.e. c^{early}) when



- ► Case 3: The unconstrained efficient allocation is not BIC, i.e., c^{wait} < ĉ.</p>
- The optimal contract c*(s) satisfies: (1) If s is larger than the threshold probability s₁, we have c*(s) = c^{early} and the optimal contract is run-proof. (2) If s is smaller than s₁, the optimal contract c*(s) tolerates runs and it is a weakly decreasing function of s. Furthermore, we have c*(s) = c^{wait} for at least part of the run tolerating range of s.

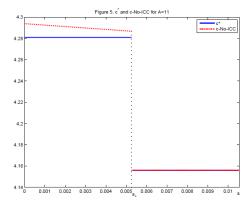
- Using the same parameters as in the previous example. Let A = 10.4. (We have seen that we are in Case 2 if A > 10.27799.)
- c^* switches to the best run-proof (i.e. c^{early}) when $s > 4.524181 \times 10^{-3}$.
- ▶ ICC becomes non-binding when $s \ge s_2 = 1.719643 \times 10^{-3}$.



▶ Let *A* = 11. (PS case)

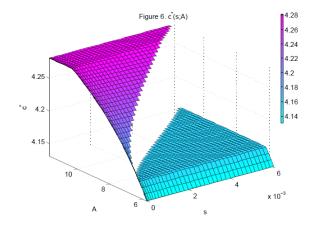
• c^* switches to the best run-proof (i.e. c^{early}) when

 $s > s_1 = 5.281242 \times 10^{-3}$.



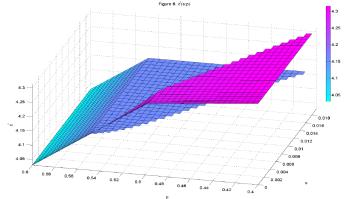
The Optimal Contract

• c^* versus s and A



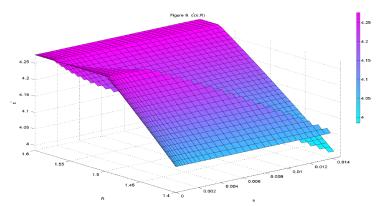
Probability of Impatience: p

▶ b = 1.01, A = 10, y = 3, R = 1.5. If $p \ge 0.548823$, the optimal contract does not tolerate runs, $c^*(s) = \hat{c}$. If $p \in [0.497423, 0.548823)$, then c^* is strictly decreasing in s until it levels off to $c^{early} = 4.155955$. If p < 0.497423, then the ICC binds when s is small.



Return R

b = 1.01, A = 10, y = 3, p = 0.5. If R ≥ 1.572948, the optimal contract does not tolerate runs, c*(s) = ĉ. If R ∈ [1.497374, 1.572948), c*(s) is strictly decreasing in s until it levels off to c^{early}. c^{early}(R) is increasing in R. If R < 1.497374, then the ICC binds when s is small.



Risk-aversion b

• A = 10, y = 3, p = 0.5, R = 1.5. If b > 1.112528, the optimal contract does not tolerate runs, $c^*(s) = \hat{c}$. \hat{c} depends on *b*. If $b \in [1.00524, 1.112528)$, then $c^*(s)$ is strictly decreasing in s until it levels off to c^{early} . If b < 1.00524. then the ICC binds when s is small. 4.28 Figure 10, c(s:b) 4 26 4.24 4.22 4.2 4.18 4.16 4 28 4.14 4.26 4.12 4.24 4.22 4.18 4.16 4.14 3.5 4.12 2.5 × 10 1.2 1.15 1.5 1.1 1.05

26 / 29

- The general form of the optimal contract to the *pre-deposit* game is analyzed.
- The unconstrained efficient allocation falls into one of the three cases:
 - ▶ (1) DSIC
 - (2) BIC but not DSIC
 - ▶ (3) not BIC.

- In Cases 2 and 3, the optimal contract tolerates runs when the run probability is sufficiently small:
- In Case 2, the optimal contract adjusts continuously and becomes strictly more conservative as the run probabilities increases.

- In Cases 2 and 3, the optimal contract tolerates runs when the run probability is sufficiently small:
- In Case 2, the optimal contract adjusts continuously and becomes strictly more conservative as the run probabilities increases.
 - The optimal allocation is never a mere randomization over the unconstrained efficient allocation and the corresponding run allocation from the post-deposit game. Hence this is also a contribution to the sunspots literature: another case in which SSE allocations are not mere randomizations over certainty allocations.

In Case 3, the ICC binds for small run-probabilities, which forces the contract to be more conservative than it would have been without the ICC. Hence, for Case 3, the optimal contract does not change with *s* until the ICC no longer binds.

- In Case 3, the ICC binds for small run-probabilities, which forces the contract to be more conservative than it would have been without the ICC. Hence, for Case 3, the optimal contract does not change with *s* until the ICC no longer binds.
 - For small s, the optimal allocation is a randomization over the constrained efficient allocation and the corresponding run allocation from the post-deposit game.