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Introduction to Bank Runs

I Bryant (1980) and Diamond and Dybvig (1983): “bank runs”

in the post-deposit game

I multiple equilibria in the post-deposit game

I One cannot understand bank runs or the optimal contract

without the full pre-deposit game

I Peck and Shell (2003): A sunspot-driven run can be an

equilibrium in the pre-deposit game for suffi ciently small run

probability.

I We show how sunspot-driven run risk affects the optimal

contract depending on the parameters.
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The Model: Consumers

I 2 ex-ante identical vNM consumers and 3 periods: 0, 1 and 2.

I Endowments: y

I Preferences: u(c1) and v(c1 + c2):

I impatient: u(x) = A (x )
1−b

1−b , where A > 0 and b > 1.

I patient: v(x) = (x )1−b
1−b .

I Types are uncorrelated (so we have aggregate uncertainty.):

p
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The Model: Technology

I Storage:
t = 0 t = 1 t = 2

−1 1

−1 1

I More Productive

t = 0 t = 1 t = 2

−1 0 R
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The Model

I Sequential service constraint (Wallace (1988))

I Suspension of convertibility.

I A depositor visits the bank only when he makes withdrawals.

I When a depositor makes his withdrawal decision, he does not

know his position in the bank queue.

I If more than one depositor chooses to withdraw, a depositor’s

position in the queue is random. Positions in the queue are

equally probable.

I Aggregate uncertainty
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Post-Deposit Game: Notation

I c ∈ [0, 2y ] is any feasible banking contract
I ĉ ∈ [0, 2y ] is the unconstrained optimal banking contract
I c∗ ∈ [0, 2y ] is the constrained optimal banking contract
I Smaller c is conservative; larger c is fragile
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Post-Deposit Game: cearly

I A patient depositor chooses early withdrawal when he expects

the other depositor to also choose early withdrawal.

[v(c) + v(2y − c)]/2 > v [(2y − c)R ]

I Let cearly be the value of c such that the above inequality

holds as an equality.
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Post-Deposit Game: cwait

I A patient depositor chooses late withdrawal when he expects

the other depositor, if patient, to also choose late withdrawal.

(ICC)

pv [(2y − c)R ]+ (1−p)v(yR) ≥ p[v(c)+ v(2y − c)]/2+(1−p)v(c).

I Let cwait be the value of c such that the above inequality

holds as an equality.
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Post-Deposit Game: “usual”values of the parameters

I cearly < cwait if and only if

b < min{2, 1+ ln 2/ lnR}
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Post-Deposit Game: “usual”values of the parameters

I We call these values of b and R “usual” since the set of DSIC

contracts (i.e, [0, cwait ]) is a strict subset of BIC contracts

(i.e, [0, cearly ]).

I The interval (cearly , cwait ] is the region of c for which the

patient depositors’withdrawal decisions exhibit strategic

complementarity.
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Post-Deposit Game: “unusual”values of the parameters

I The values of b and R are “unusual”when the set of DSIC

contracts is the same as the set of BIC contracts.

I According to the Revelation Principle, when we search for the

optimal contract we only have to focus on the BIC contracts.

I Hence, for the “unusual”parameters, the optimal contract

must be DSIC and the bank runs are not relevant.
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Post-Deposit Game: “unusual”values of the parameters

I The “unusual” values of b and R can cause cearly ≥ cwait .
I (cwait , cearly ] is the region of c for which the patient

depositors’withdrawal decisions exhibit strategic

substitutability.

I For the optimal contract, the only relevant region is [0, cwait ]

(i.e., BIC contracts). 12 / 29



Pre-Deposit Game

I For the rest of the presentation, we focus on the "usual"

values of b and R.

I Whether bank runs occur in the pre-deposit game depends on

whether the optimal contract c∗ belongs to the region of

strategic complementarity (i.e., c ∈ (cearly , cwait ]).
I To characterize the optimal contract, we divide the problem

into three cases depending on ĉ , the contract supporting the

unconstrained effi cient allocation.

I ĉ ≤ cearly (Case 1)
I ĉ ∈ (cearly , cwait ] (Case 2)
I ĉ > cwait (Case 3)
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Impulse parameter A and the 3 cases

I ĉ is the c in [0, 2y ] that maximizes

Ŵ (c) =
{
p2[u(c) + u(2y − c)] + 2p(1− p)[u(c) + v((2y − c)R)]

+ 2(1− p)2v(yR) } .

I

ĉ =
2y

{p/(2− p) + 2(1− p)/[(2− p)ARb−1]}1/b + 1
.

I ĉ(A) is an increasing function of A.
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Parameter A and the 3 Cases

I Neither cearly nor cwait depends on A
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Example

I The parameters are

b = 1.01; p = 0.5; y = 3;R = 1.5

I We see that b and R satisfy the condition which makes the set

of contracts permiting strategic complementarity non-empty.

We have that cearly = 4.155955 and cwait = 4.280878.

I Aearly = 6.217686 and Await = 10.27799.

I If A ≤ Aearly , we are in Case 1; If Aearly < A ≤ Await , we are
in Case 2; If A > Await , we are in Case 3.
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The Optimal Contract: Case 1

I Case 1: The unconstrained effi cient allocation is DSIC, i.e.,

ĉ ≤ cearly .
I It is straightforward to see that the optimal contract for the

pre-deposit game supports the unconstrained effi cient

allocation

c∗(s) = ĉ.

and that the optimal contract doesn’t tolerate runs.
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The Optimal Contract: Case 2

I Case 2: The unconstrained effi cient allocation is BIC but not

DSIC, i.e., cearly < ĉ ≤ cwait .
I The optimal contract c∗(s) satisfies: (1) if s is larger than the

threshold probability s0, the optimal contract is run-proof and

c∗(s) = cearly . (2) if s is smaller than s0, the optimal

contract c∗(s) tolerates runs and it is a strictly decreasing

function of s.

18 / 29



The Optimal Contract: Case 2

I Using the same parameters as the previous example. Let

A = 8. (We have seen that we are in Case 2 if

6.217686 < A ≤ 10.27799.)
I c∗ switches to the best run-proof contract (i.e. cearly ) when

s > s0 = 1.382358× 10−3.
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The Optimal Contract: Case 3

I Case 3: The unconstrained effi cient allocation is not BIC, i.e.,

cwait < ĉ .

I The optimal contract c∗(s) satisfies: (1) If s is larger than the

threshold probability s1, we have c∗(s) = cearly and the

optimal contract is run-proof. (2) If s is smaller than s1, the

optimal contract c∗(s) tolerates runs and it is a weakly

decreasing function of s. Furthermore, we have c∗(s) = cwait

for at least part of the run tolerating range of s.
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The Optimal Contract: Case 3

I Using the same parameters as in the previous example. Let

A = 10.4. (We have seen that we are in Case 2 if

A > 10.27799.)
I c∗ switches to the best run-proof (i.e. cearly ) when

s > 4.524181× 10−3.
I ICC becomes non-binding when s ≥ s2 = 1.719643× 10−3.
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The Optimal Contract: Case 3

I Let A = 11. (PS case)

I c∗ switches to the best run-proof (i.e. cearly ) when

s > s1 = 5.281242× 10−3.
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The Optimal Contract

I c∗ versus s and A
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Probability of Impatience: p

I b = 1.01, A = 10, y = 3, R = 1.5. If p ≥ 0.548823, the
optimal contract does not tolerate runs, c∗(s) = ĉ. If

p ∈ [0.497423, 0.548823), then c∗ is strictly decreasing in s
until it levels off to cearly = 4.155955. If p < 0.497423, then

the ICC binds when s is small.
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Return R

I b = 1.01, A = 10, y = 3, p = 0.5. If R ≥ 1.572948, the
optimal contract does not tolerate runs, c∗(s) = ĉ . If

R ∈ [1.497374, 1.572948), c∗(s) is strictly decreasing in s
until it levels off to cearly . cearly (R) is increasing in R. If

R < 1.497374, then the ICC binds when s is small.
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Risk-aversion b

I A = 10, y = 3, p = 0.5, R = 1.5. If b ≥ 1.112528, the
optimal contract does not tolerate runs, c∗(s) = ĉ . ĉ depends

on b. If b ∈ [1.00524, 1.112528), then c∗(s) is strictly
decreasing in s until it levels off to cearly . If b < 1.00524,

then the ICC binds when s is small.
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Summary and Concluding Remark

I The general form of the optimal contract to the pre-deposit

game is analyzed.

I The unconstrained effi cient allocation falls into one of the

three cases:

I (1) DSIC
I (2) BIC but not DSIC
I (3) not BIC.

27 / 29



Summary and Concluding Remark

I In Cases 2 and 3, the optimal contract tolerates runs when

the run probability is suffi ciently small:

I In Case 2, the optimal contract adjusts continuously and

becomes strictly more conservative as the run probabilities

increases.

I I The optimal allocation is never a mere randomization over the

unconstrained effi cient allocation and the corresponding run

allocation from the post-deposit game. Hence this is also a

contribution to the sunspots literature: another case in which

SSE allocations are not mere randomizations over certainty

allocations.
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Summary and Concluding Remark

I In Case 3, the ICC binds for small run-probabilities, which

forces the contract to be more conservative than it would have

been without the ICC. Hence, for Case 3, the optimal contract

does not change with s until the ICC no longer binds.

I I For small s , the optimal allocation is a randomization over the

constrained effi cient allocation and the corresponding run

allocation from the post-deposit game.
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