We are seeking a seminar room for ECON 4905. We will keep you posted, but please be alert.

Update bio needed for at least one student.

Wall Street
- Scientific method
 - Model
 - Data
- Scientific method
 - Model
 - Data
- Economics is a behavioral science
 - Beliefs about beliefs of others
 - Coordination
 - Paper assets and finance amplify this aspect
Scientific method
 ▶ Model
 ▶ Data

Economics is a behavioral science
 ▶ Beliefs about beliefs of others
 ▶ Coordination
 ▶ Paper assets and finance amplify this aspect

Economists
 ▶ Not good at macro-forecasting
 ▶ Good at predicting ”unintended consequences”
 ▶ Somewhat good at using theory and data in place of emotions and tribalism
What is macro-economics?

- **Denotation**
 - Aggregate variables from national income accounts
 - Simon Kuznets, Penn US
 - Richard Stone, Cambridge UK
What is macro-economics?

- **Denotation**
 - Aggregate variables from national income accounts
 - Simon Kuznets, Penn US
 - Richard Stone, Cambridge UK

- **Conotation**
 - Money and finance
 - Interest rates
 - Intertemporal
 - Expectations
 - Banking
 - Unemployment
 - And more
This course, ECON 4905

Goals:
This course, ECON 4905
Goals:

- Integration of macro-economics, monetary economics, banking, taxation, regulation
This course, ECON 4905

Goals:

- Integration of macro-economics, monetary economics, banking, taxation, regulation
- Focus on bank runs and other financial fragility
This course, ECON 4905

Goals:

▶ Integration of macro-economics, monetary economics, banking, taxation, regulation
▶ Focus on bank runs and other financial fragility
▶ Prepare students:
This course, ECON 4905

Goals:
- Integration of macro-economics, monetary economics, banking, taxation, regulation
- Focus on bank runs and other financial fragility
- Prepare students:
 - to assess and understand policy issues
This course, ECON 4905

Goals:

► Integration of macro-economics, monetary economics, banking, taxation, regulation

► Focus on bank runs and other financial fragility

► Prepare students:
 ► to assess and understand policy issues
 ► to understand economic, financial and banking history in US and elsewhere
This course, ECON 4905

Goals:

▶ Integration of macro-economics, monetary economics, banking, taxation, regulation
▶ Focus on bank runs and other financial fragility
▶ Prepare students:
 ▶ to assess and understand policy issues
 ▶ to understand economic, financial and banking history in US and elsewhere
 ▶ possibly pursue careers in related fields
This course, ECON 4905

Goals:

- Integration of macro-economics, monetary economics, banking, taxation, regulation
- Focus on bank runs and other financial fragility
- Prepare students:
 - to assess and understand policy issues
 - to understand economic, financial and banking history in US and elsewhere
 - possibly pursue careers in related fields
 - CIBC
This course, ECON 4905

Goals:

- Integration of macro-economics, monetary economics, banking, taxation, regulation
- Focus on bank runs and other financial fragility
- Prepare students:
 - to assess and understand policy issues
 - to understand economic, financial and banking history in US and elsewhere
 - possibly pursue careers in related fields
 - CIBC
 - Wall Street
This course, ECON 4905

Goals:

- Integration of macro-economics, monetary economics, banking, taxation, regulation
- Focus on bank runs and other financial fragility
- Prepare students:
 - to assess and understand policy issues
 - to understand economic, financial and banking history in US and elsewhere
 - possibly pursue careers in related fields
 - CIBC
 - Wall Street
 - Fed
Review: Money Taxes and Transfers
Review: Money Taxes and Transfers

- 1 commodity, say chocolate, \(l = 1 \)
Review: Money Taxes and Transfers

- 1 commodity, say chocolate, $l = 1$
- n individuals, $h = (1, 2, \ldots, n)$
Review: Money Taxes and Transfers

- 1 commodity, say chocolate, $l = 1$
- n individuals, $h = (1, 2, \ldots, n)$
- money taxes, $\tau = (\tau_1, \tau_2, \ldots, \tau_n)$ in say dollars
Review: Money Taxes and Transfers

- 1 commodity, say chocolate, \(l = 1 \)
- \(n \) individuals, \(h = (1, 2, \ldots, n) \)
- money taxes, \(\tau = (\tau_1, \tau_2, \ldots, \tau_n) \) in say dollars
- \(P^m \geq 0 \), the commodity price of money, i.e., the chocolate price of dollars
Review: Money Taxes and Transfers

- 1 commodity, say chocolate, \(l = 1 \)
- \(n \) individuals, \(h = (1, 2, \ldots, n) \)
- money taxes, \(\tau = (\tau_1, \tau_2, \ldots, \tau_n) \) in say dollars
- \(P^m \geq 0 \), the commodity price of money, i.e., the chocolate price of dollars
- \(x = (x_1, \ldots, x_h, \ldots, x_n) > 0 \) is the vector of chocolate consumption
Review: Money Taxes and Transfers

- 1 commodity, say chocolate, \(l = 1 \)
- \(n \) individuals, \(h = (1, 2, \ldots, n) \)
- money taxes, \(\tau = (\tau_1, \tau_2, \ldots, \tau_n) \) in say dollars
- \(P^m \geq 0 \), the commodity price of money, i.e., the chocolate price of dollars
- \(x = (x_1, \ldots, x_h, \ldots, x_n) > 0 \) is the vector of chocolate consumption
- \(\omega = (\omega_1, \ldots, \omega_h, \ldots, \omega_n) > 0 \) is the vector of chocolate endowments
x_h = \omega_h - P^m_{\tau_h} \quad h = 1, \ldots, n
\[x_h = \omega_h - P^m \tau_h \quad h = 1, \ldots, n \]

\[\text{CP} \left\{ \begin{array}{l}
\max U_h(x_h) \\
\text{subject to: } x_h > 0 \text{ and } x_h = \omega_h - P^m \tau_h
\end{array} \right. \]
\[x_h = \omega_h - P^m \tau_h \quad h = 1, \ldots, n \]

\[
\text{CP} \begin{cases}
\max U_h(x_h) \\
\text{subject to: } x_h > 0 \quad \text{and} \quad x_h = \omega_h - P^m \tau_h
\end{cases}
\]

\(P^m \geq 0 \) defines a C.E. if CP holds for \(h = 1, \ldots, n \) and materials balance.
\[x_h = \omega_h - P^m \tau_h \quad h = 1, \ldots, n \]

\[
\begin{aligned}
\text{CP} & \left\{ \max U_h(x_h) \\
\text{subject to:} & \quad x_h > 0 \quad \text{and} \quad x_h = \omega_h - P^m \tau_h
\end{aligned}
\]

\(P^m \geq 0 \) defines a C.E. if CP holds for \(h = 1, \ldots, n \) and materials balance.

\[
\text{MB:} \quad \sum_{h=1}^{n} x_h = \sum_{h=1}^{n} \omega_h
\]
Summing over individuals:

\[\sum_{h=1}^{n} x_h = \sum_{h=1}^{n} \omega_h - P^m \sum_{h=1}^{n} \tau_h \]
Summing over individuals:

\[
\sum_{h=1}^{n} x_h = \sum_{h=1}^{n} \omega_h - P^m \sum_{h=1}^{n} \tau_h
\]

which yields

\[
\sum_{h=1}^{n} (x_h - \omega_h) = -P^m \sum_{h=1}^{n} \tau_h
\]
Summing over individuals:

\[\sum_{h=1}^{n} x_h = \sum_{h=1}^{n} \omega_h - P^m \sum_{h=1}^{n} \tau_h \]

which yields

\[\sum_{h=1}^{n} (x_h - \omega_h) = -P^m \sum_{h=1}^{n} \tau_h \]

but by MB

\[\sum_{h=1}^{n} (x_h - \omega_h) = 0 \]
Summing over individuals:

\[
\sum_{h=1}^{n} x_h = \sum_{h=1}^{n} \omega_h - P^m \sum_{h=1}^{n} \tau_h
\]

which yields

\[
\sum_{h=1}^{n} (x_h - \omega_h) = - P^m \sum_{h=1}^{n} \tau_h
\]

but by MB

\[
\sum_{h=1}^{n} (x_h - \omega_h) = 0
\]

so

\[P^m = 0 \quad \text{or} \quad \sum_{h=1}^{n} \tau_h = 0 \quad \text{or both}\]
Bonafide Taxes and Balanced Taxes

- $\tau = (\tau_1, \ldots, \tau_h, \ldots, \tau_n)$ is said to be *balanced* if we have $\sum_{h=1}^n \tau_h = 0$, i.e., if taxes exactly offset subsidies.

- τ is said to be *bonafide* if there is at least one CE in which $P^m > 0$. (In other words, τ is a good faith policy).

- We have shown that if τ is imbalanced, then τ is not bonafide. Every bonafide τ is balanced in this simple finite economy.
Bonafide implies balanced. Is the converse true? That is, are bonafide policies and balanced policies equivalent?
Bonafide implies balanced. Is the converse true? That is, are bonafide policies and balanced policies equivalent?

To show: \(\tau \) balances \(\Rightarrow \) \(\tau \) bonafide.
Bonafide implies balanced. Is the converse true? That is, are bonafide policies and balanced policies equivalent?

To show: \(\tau \) balances \(\Rightarrow \) \(\tau \) bonafide.

Define the tax-adjusted endowment
\[
\tilde{\omega} = (\tilde{\omega}_1, \ldots, \tilde{\omega}_h, \ldots, \tilde{\omega}_n) = \\
(\omega_1 - P^m \tau_1, \ldots, \omega_h - P^m \tau_h, \ldots, \omega_n - P^m \tau_n).
\]
Bonafide implies balanced. Is the converse true? That is, are bonafide policies and balanced policies equivalent?

To show: \(\tau \) balances \(\Rightarrow \tau \) bonafide.

Define the tax-adjusted endowment
\[
\tilde{\omega} = (\tilde{\omega}_1, \ldots, \tilde{\omega}_h, \ldots, \tilde{\omega}_n) = (\omega_1 - P^m \tau_1, \ldots, \omega_h - P^m \tau_h, \ldots, \omega_n - P^m \tau_n).
\]

Since \(\omega > 0 \), for \(P^m > 0 \) sufficiently small, we have \(\tilde{\omega} > 0 \). The CE for this \(\tilde{\omega} \) (without money) yields \(x > 0 \) and \(\sum_h x_h = \sum_h \tilde{\omega}_h = \sum_h (\omega_h - P^m \tau_h) = \sum_h \omega_h - P^m \sum_h \tau_h = \sum_h \omega_h \). Hence there are \(P^m > 0 \) in money-tax equilibrium.
Outside Money Taxation: Examples

\[l = 1, n = 6, \omega = (\omega_1, \ldots, \omega_h, \ldots, \omega_6) = (100, 90, 10, 10, 10, 10) \]
Outside Money Taxation: Examples

\[l = 1, n = 6, \omega = (\omega_1, \ldots, \omega_h, \ldots, \omega_6) = (100, 90, 10, 10, 10, 10) \]

Example 1

\[\tau = (20, 20, -10, -10, -10, -10) \]

\[\sum_h \tau_h = 0 \Rightarrow \tau \text{ bonafide} \]

2 guys (Mr. 1 and Mr. 2) are taxed.
Outside Money Taxation: Examples

\(l = 1, n = 6, \omega = (\omega_1, \ldots, \omega_h, \ldots, \omega_6) = (100, 90, 10, 10, 10, 10) \)

Example 1

\[
\tau = (20, 20, -10, -10, -10, -10)
\]

\[
\sum_{h} \tau_h = 0 \Rightarrow \tau \text{ bonafide}
\]

2 guys (Mr. 1 and Mr. 2) are taxed.

Mr. 1:

\[
100 - 20P^m > 0
\]

\[
20P^m < 100
\]

\[
P^m < 5
\]
Outside Money Taxation: Examples

\(l = 1, n = 6, \omega = (\omega_1, \ldots, \omega_h, \ldots, \omega_6) = (100, 90, 10, 10, 10, 10) \)

Example 1

\[\tau = (20, 20, -10, -10, -10, -10) \]

\[\sum_h \tau_h = 0 \Rightarrow \tau \text{ bonafide} \]

2 guys (Mr. 1 and Mr. 2) are taxed.

Mr. 1:

\[100 - 20P^m > 0 \]
\[20P^m < 100 \]
\[P^m < 5 \]

Mr. 2:

\[90 - 20P^m > 0 \]
\[20P^m < 90 \]
\[P^m < \frac{9}{2} < 5 \]

\(P^m = \left[0, \frac{9}{2} \right) \) \(P^m \) is the set of equilibrium money prices
Example 2

\[\tau = (100, 90, -20, -20, -20, -20) \]

\[\sum_{h} \tau_h = 100 + 90 + 4(-20) = 110 \neq 0 \]

\(\tau \) not balanced \(\Rightarrow \) \(\tau \) not bonafide

\[P^m = \{0\} \]
Example 3

\[\tau = (2, 2, -1, -1, -1, -1) \]

\[\sum_{h} \tau_h = 4 - 4 = 0 \]

\(\tau \) balanced \(\Rightarrow \) \(\tau \) bonafide

Mr. 1

\[100 - 2P^m > 0 \]
\[2P^m < 100 \]
\[P^m < 50 \]

Mr. 2

\[90 - 2P^m > 0 \]
\[2P^m < 90 \]
\[P^m < 45 \]
\[P^m = [0, 45) \]
Example 4

\[\tau = (0, 0, -5, -5, -5, -5) \]

\[\sum_{h} \tau_h = 0 - 20 = -20 \neq 0 \]

\(\tau \) not balanced \(\Rightarrow \) \(\tau \) not bonafide

\[P^m = \{0\} \]
Example 5

\[\tau = (0, 0, 0, 0, 0, 0) \]

\[\sum_h \tau_h = 0 \]

\[\tau \text{ balanced} \Rightarrow \tau \text{ bonafide} \]

\[\mathcal{P}_m = [0, \infty) \]

\(\mathcal{P}_m \) is indeterminate because there are no money trades at any price.
Money Taxation Take-aways:

- In some cases, the equilibrium allocation x is unique, but generally x depends on consumer beliefs about P^m.
- Fundamentals do not completely determine economic outcomes. Beliefs are important: this is a basic source of financial fragility.
- Compare to Ben Stein’s remark.