The Economics of Uncertainty

- The state of nature: s
- Realizations: s_1, s_2, \ldots
- Intrinsic Uncertainty
 - Random fundamentals
 - Examples

 $s_1 = \text{rain}$ $s_2 = \text{drought}$

 $s_1 = \text{hot}$ $s_2 = \text{cold}$

- Extrinsic Uncertainty
 - Randomness that does not affect the fundamentals, but does affect outcomes.
 - Examples

 $s_1 = \text{no run}$ $s_2 = \text{run}$

 $s_1 = \text{sunspots}$ $s_2 = \text{no sunspots}$
Expected Utility

- von Neumann and Morgenstern
 - Expected Utility
 - \(V = \pi(s_1)u(x(s_1)) + \pi(s_2)u(x(s_2)) \)
 - \(\pi(s_1) = 1 - \pi(s_2) \)
 - \(V = \int u(x(s))\pi(s)ds \)
 - Risk aversion:
 - \(u(x) \)
 - \(u'(x) > 0 \)
 - \(u''(x) < 0 \) Risk-averse
 - Risk-neutral
 - \(u''(x) = 0 \)
 - Risk-loving
 - \(u''(x) > 0 \)
Arrow-Debreu

- Isomorphism
 - Contingent-claims
 - Securities
F – Fire, N – no fire, E – expected value

$\pi(F)u(F) + \pi(N)u(N)$

$u(x)$
CRRA

- Kenneth Arrow
- John Pratt
- $u(c) = \frac{c^{1-\gamma}}{1-\gamma}$
 - For $\gamma = 1$, define $u(c) = \log(c)$
- $u'(c) = \left(\frac{1-\gamma}{1-\gamma}\right)c^{-\gamma} = c^{-\gamma} > 0$
- $u''(c) = -\gamma c^{-\gamma-1} < 0$
- Risk-aversion:

$$-\frac{cu''(c)}{u'(c)} = \frac{\gamma c^{-\gamma-1}c}{c^{-\gamma}} = \frac{\gamma c^{-\gamma}}{c^{-\gamma}} = \gamma$$
Profit Maximization

- **NOT** an axiom
- Theorem, requiring assumptions
- Perfect markets
Robinson Crusoe

Graph showing the Production Possibility Frontier (PPF) between Fish and Coconuts.
Robinson Crusoe
- Produces to market. Profit max
 - In order to max utility
- Dynamic extension
 - Max PDV
 - If borrowing and lending are perfect
- Uncertainty extension
 - Max contingent-claim profit
 - If insurance is perfect
- Present prices: $p(t)$ and $p(t + 1)$
- $p(t) = R(t)p(t + 1)$, where $R(t)$ is the interest factor
- $r(t) = R(t) - 1$ is the interest rate
- Profit max becomes PDV max:

\[
PDV = p(t)y(t) + p(t + 1)y(t + 1)
= p(t)\left[y(t) + \frac{y(t + 1)}{1 + r(t)}\right]
\]