- 2-consumer model based on PS (JME)
- 2 financial systems
 - Unified (UB)
 - Separated (GSB)
- panic-based runs are sunspot-driven, PS(JPE), EK(EER)
Goals:

- Evaluate relative performances of UB, GSB, and autarky (A):
 - Consumer welfare
 - Run susceptibility
 - Disintermediation (i.e., bank is strictly inferior to autarky)

- Quantitative experiments:
 - Welfare gain (or loss) in terms of percent of endowment in moving from one regime to another.
Preview of Results:

- **UB**
 - not susceptible to panic-based runs
 - not susceptible to disintermediation
 - welfare non-strictly dominates GSB and A

- **GSB**
 - may be susceptible to runs
 - may be susceptible to disintermediation
 - calculated loss from GSB can be compared to costs of phenomena outside the model (e.g., moral hazard)
Consumption Opportunities

- Periods: \(T = 0, 1, 2 \)
- Impatient I
 - Best in \(T = 1, \bar{u} \)
 - In \(T = 2, \beta \bar{u}, 0 < \beta < 1 \)
- Patient P
 - Best in \(T = 2, \bar{u} \)
 - P never chooses \(T = 1 \) (or \(\beta \bar{u} \))
- Left over balances, \(u(\cdot) \).
 - \(u' > 0, u'' < 0 \)
The Model: Choice of investments

- Endowment $y \geq 1$
- $(1 - \gamma)$ is fraction of y invested in A, illiquid
- γ is fraction of y invested in B, liquid
- Aggregate endowment, $2y$
- Aggregate liquidity, $2\gamma y$
- Return on A: 0 if harvested early, R_A if harvested late
- Return on B: 1 if harvested early, R_B if harvested late
- $\Delta = R_A - R_B > 0$
Intrinsic Uncertainty (Types)

- There are 2 possible realizations, R1 and R2:
 - R1: There is one I and one P.
 - R2: There are 2 P's.
 - \(\text{Prob}(R1) = q, \text{Prob}(R2) = (1 - q) \).
 - Given R1, the probability that a given consumer is I is \(\frac{1}{2} \).
- Types are realized in \(T = 1 \).
Sequential Service

- Positions in queue are equally probable.
- Second in queue sees what first in queue chooses.
- Second in line can walk away.
- Strategic complementarity for all parameters.
Extrinsic Uncertainty (Sunspots)

- Sunspots, our focus today, PS(JPE)

- Sunspots, future work, inspired by EK(EER), e.g.
Timing

- $T = 0$
 - Government chooses UB or GSB, always allowing A.
 - Bank chooses portfolio and designs contract
 - Consumer chooses to deposit or not.
 - If consumer chooses A, he determines his portfolio.
T=1 and T=2

- Analyzing dynamic problem right-to-left.
- Characterize the set of parameters for which the consumer withdraws if he is able.
- An impatient who is able to withdraw at $T=1$
 - prefers to withdraw in $T=1$ to $T=2$ iff
 \[
 \bar{u} + u(yR_A - R_A) > \beta \bar{u} + u(yR_A - R_A + R_B - 1). \tag{1}
 \]
 - prefers to withdraw in $T=1$ rather than defer iff
 \[
 \bar{u} + u(yR_A - R_A) > u(yR_A - R_A + R_B). \tag{2}
 \]
An impatient who is \textit{unable} to withdraw in $T = 1$, prefers $T = 2$ to deferring iff

$$\beta \bar{u} + u(yR_A - 1) > u(yR_A).$$

(3)

We analyze in our paper the set Z of parameter values satisfying inequalities (1)-(3). Z is the set of parameters in which liquidity would be chosen if types were known ex-ante.
Given the other parameter values, there is a critical value \bar{u}_0 such that for $\bar{u} > \bar{u}_0$ consumption opportunities are undertaken if the consumer is able to do so.

$(1/\bar{u}_0)$ serves as a measure of *ideal* resource efficiency.

If $\bar{u} < \bar{u}_0$, it is never worthwhile to hold the liquid asset.

In what follows next, we assume that the parameter values lie in the set Z.

Later we will analyze parameters outside Z.
Autarky (A)

- $W_1^A > W_0^A$ iff $\bar{u} > \bar{u}_4$, where W_i^A is expected utility when holding i units of the liquid asset, where \bar{u}_4 is the critical value.
- $\bar{u}_0 < \bar{u}_4$. Holding the liquid asset ex-ante is more costly than holding it ex-post (after the types are known).
To satisfy the consumption opportunity, UB needs to hold 1/2 unit of liquid asset per depositor.

\[W_{1/2}^{UB} > W_{0}^{UB} \text{ iff } \bar{u} > \bar{u}_1, \text{ where } \bar{u}_1 \text{ is the critical value.} \]

UB can pool the liquidity assets among the depositors. Therefore, it is less costly to satisfy the urgent consumption opportunity through UB than in autarky. That is, \(\bar{u}_1 < \bar{u}_4 \).
UB vs Autarky (A)

- $W_{1/2}^{UB} > W_1^A$ and $W_0^{UB} = W_0^A$.

- Let $W^{UB} = \max\{W_{1/2}^{UB}, W_0^{UB}\}$ and $W^A = \max\{W_1^A, W_0^A\}$, we have
 - $W^{UB} > W^A$ if and only if $\bar{u} > \bar{u}_1$.

- \bar{u}_1 is the threshold of \bar{u} above which UB strictly dominates A.
GSB vs Autarky

- Compared to UB, GSB is restricted by:
 - bank runs
 - ICC requires the bank to hold more than $1/2$ unit of liquid asset per depositor.
- Bank runs make the expected utility of a depositor in GSB weakly decreasing in s.
- The minimum requirement of liquid asset holding makes GSB dominated by UB even if $s = 0$.
- Therefore, $W^{GSB}(s_0) < W^{GSB}(0) < W^{UB}$, where
 - $W^{GSB}(s)$ denotes the expected utility of a depositor when the sunspot-driven run probability is s.
 - s_0 denotes the threshold of s beyond which the GSB switches to the run-proof contract.
GSB vs A

\[W^{GSB}(s) > W^A_1 \text{ for all } s. \]

- This is because the lower bound of \(W^{GSB}(s) \) is \(W^{GSB}(s_0) \) in which the contract is run-proof. And in the run-proof contract, the per person liquid asset holding is strictly smaller than 1.

- Therefore, whether disintermediation occurs depends on the comparison between \(W^{GSB}(s) \) and \(W^A_0 \).
\(W^{GSB}(0) > W^A_0 \) if and only if \(\bar{u} > \bar{u}_2 \), where \(\bar{u}_2 \) is the critical value.

\(W^{GSB}(s_0) > W^A_0 \) if and only if \(\bar{u} > \bar{u}_3 \), where \(\bar{u}_3 \) is the critical value.

We have \(\bar{u}_2 < \bar{u}_3 \). Each of these two thresholds is larger than \(\bar{u}_1 \). This is because \(W^{GSB}(s_0) < W^{GSB}(0) < W^{UB} \).
Comparative Statics wrt \bar{u}

Disintermediation for GSB
(i.e., $W_{GB}(s) < W_{Autarky}$ for all $s \in [0,1]$)

Conditional Disintermediation for GSB depending on s
(i.e., $W_{GB}(s_0) < W_{Autarky} < W_{GB}(0)$)

Intermediation for GSB
(i.e., $W_{Autarky} < W_{GB}(s)$ for all $s \in [0,1]$)

Weak Intermediation for UB
(i.e., $W_{Autarky} = W_{UB}$)

Intermediation for UB
(i.e., $W_{Autarky} < W_{UB}$)
Numerical Example 1

- We calculate, for different values of \bar{u}, the fraction of endowment y a consumer would pay to become a depositor at the UB.

- The parameters: $\beta = 0.6$, $q = 0.5$, $y = 1.1$, $R_A = 1.5$, $R_B = 1.3$, $u(c) = \frac{(c+1)^{1-\theta} - 1}{1-\theta}$, where $\theta = 2$.

- We calculate that $\bar{u}_0 = 0.4698$. We vary \bar{u} from 0.5 to 1.5.
UB is non-redundant ($W^{UB} > W^A$) if and only if $\bar{u} > \bar{u}_1 = 0.7366$.

$W^{GSB}(0) > W^A_0$ if and only if $\bar{u} > \bar{u}_2 = 1.0862$.

$W^{GSB}(s_0) > W^A_0$ if and only if $\bar{u} > \bar{u}_3 = 1.1127$.

$W^A_1 > W^A_0$ if and only if $\bar{u} > \bar{u}_4 = 1.2857$.
Numerical Example 1: Willingness to pay to move to UB
Numerical Example 2

- We plot the fraction of endowment that a consumer would pay to become a depositor of the UB.
- We fix $\beta = 0.5$. Other parameters are the same as the previous example.
- We vary y from 1 to 2. It can be verified that, for y in this range, the consumer will take advantage of the consumption opportunity if he is able to do so.
Numerical Example 2: Willingness to pay to move to UB
Numerical Example 3

- We plot the fraction of endowment that a consumer would pay to become a depositor in the UB.
- We fix $R_B = 1.3$. We vary Δ from 0.03 to 1.3.
- Other parameters remain the same as the previous example.
Numerical Example 3: Willingness to pay to move to UB