three periods: $T = 0, 1, 2$

a single good

a continuum of agents with measure 1

Each agent is endowed with 1 unit of the good in period 0.
The Model: Asset Return

\[T = 0 \quad T = 1 \quad T = 2 \]

\[
\begin{array}{c}
-1 \\
R
\end{array}
\begin{array}{c}
\{ 0 \\
1
\}
\begin{array}{c}
0 \\
0
\end{array}
\]
The Model: Preferences

- In period 0, all agents are identical.
- In period 1, some agents become “patient” and others become “impatient”. (private information)

\[
\begin{align*}
 & \quad \text{if impatient} \\
 \begin{cases}
 u(c_1) & \text{if impatient} \\
 u(c_1 + c_2) & \text{if patient}
 \end{cases}
\end{align*}
\]

- The probability of being impatient is λ for each agent in period 0.
- λ is also the measure (“fraction”) of impatient agents.
Autarky

- autarky:
 - utility of the impatient in period 1: $u(1)$
 - utility of the patient in period 2: $u(R)$
 - expected utility in period 0: $\lambda u(1) + (1 - \lambda) u(R)$

- $1 < R$
 - “insurance” against the liquidity shock is desirable.
Banks offers demand deposit contract \((d_1, d_2)\).

Agents

- make deposits in period 0.
- withdraw \(d_1\) in period 1.
- or withdraw \(d_2\) in period 2.

Free-entry banking sector: \((d_1, d_2)\) maximizes the depositor’s expected utility.
Optimal Deposit Contract

\[
\max_{d_1,d_2} \lambda u(d_1) + (1 - \lambda) u(d_2)
\]

s.t. \[\begin{array}{c}
(1 - \lambda) d_2 \\ \text{withdrawals in period 2}
\end{array}\] \leq \[\begin{array}{c}
(1 - \lambda d_1) R \\ \text{resources in period 2}
\end{array}\] \quad (RC)

\[d_1 \leq d_2\] \quad (IC)
Optimal Deposit Contract:

\[(1 - \lambda) d_2 = (1 - \lambda d_1) R\]

\[\text{slope} = -\frac{\lambda}{1 - \lambda} R\]
Optimal Deposit Contract:

\[\lambda u(d_1) + (1 - \lambda) u(d_2) = \text{const} \]

slope = \(-\frac{\lambda}{1 - \lambda} \frac{u'(d_1^*)}{u'(d_2^*)} \)

\((1 - \lambda)d_2 = (1 - \lambda d_1)R \)

\[\frac{\lambda}{1 - \lambda} \frac{u'(d_1^*)}{u'(d_2^*)} = \frac{\lambda}{1 - \lambda} R \]

\(MRS \) \(MRT \)
What do banks do?

- \(u'(d_1^*) / u'(d_2^*) = R \)
- \(u'' < 0 \Rightarrow d_1^* < d_2^* \)
- CRRA: \(u(c) = \frac{c^{1-\gamma}}{1-\gamma} \)

 - \(u'(c) = c^{-\gamma} \Rightarrow u'(d_1) / u'(d_2) = (d_2 / d_1)^\gamma \)
 - if \(\gamma = 1 \Rightarrow d_1^* = 1, d_2^* = R \)
 - if \(\gamma > 1 \Rightarrow 1 < d_1^* < d_2^* < R \)
Why do bank runs occur?

- \(\gamma > 1 \implies 1 < d_1^* < d_2^* < R \)
- IC: \(d_1 \leq d_2 \)
- Expectation: Only the impatient depositors withdraw in period 1.
 - A patient depositor can \(\begin{cases}
 \text{get } d_2^* & \text{if he withdraws in period 2} \\
 \text{get } d_1^* & \text{if he withdraws in period 1}
 \end{cases} \)
Why do bank runs occur?

- $\gamma > 1 \implies 1 < d_1^* < d_2^* < R$

- Expectation: All other depositors demand withdraw in period 1.

- A patient depositor can
 - get *nothing* if he withdraws in period 2
 - get d_1^* w.p. $1/d_1^*$ if he withdraws in period 1

Yu Zhang (Cornell University)