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Capital gains play an essential role in the intertemporal allocation of resources, but they can also
fuel self-fulfilling bubbles. The simple case of 2 “identical” capitals is analyzed in an overlapping
generations model. The only trajectory in which expectations are realized at every date is the one in
which blue machines and red machines have the same price. If ever their prices differ, then there is a
“bubble” which must burst in finite time.
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1. Introduction

Capital gains (and losses) are essential to the workings of private-ownership economies.
Changes in asset prices signal anticipated changes in relative scarcities. Capital gains can,
however, fuel self-perpetuating bubbles, some of which will eventually burst.

For individuals (or corporations or universities), the capital gains on (growth) stocks
are no less income than the interest paid on bonds or the dividends paid on (value) stocks.
For individuals, the increase in wealth resulting from realized or unrealized capital gains is
saving just as are payroll deductions deposited in a 401 K retirement account.

The analysis of capital gains requires (1) more than one asset in a macro-dynamic model
and (2) careful attention to the workings of the asset market. We take our cue from Shell and
Stiglitz (1967).1 In Shell and Stiglitz, there are two capitals, perfect foresight, but savings
behavior is not based on individual utility maximization. In the present paper, we analyze
a two-capital production technology very much like that in Shell and Stiglitz (1967). We

∗Paper prepared for the Singapore Economic Review conference, August 4–6, 2005.
†Corresponding author.
1Also see, e.g., Shell et al. (1969), Caton and Shell (1971), Burmeister et al. (1973), Shell (1972), and Burmeister
and Graham (1974).
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replace the ad hoc consumption function of Shell–Stiglitz with utility-maximizing individ-
uals in the overlapping-generations model of Diamond (1965) extended to allow for two
capitals. We also assume that capital, once installed, cannot be directly consumed.2 There-
fore, investments are irreversible allowing for the prices of used machines to fall below their
reproduction costs, i.e., for a Tobin’s q which is less than 1.

We will in a subsequent paper study the more general 2-capital technology of Shell and
Stiglitz, but here we focus on the very special (but revealing) case in which the machines are
perfect substitutes as factors of production and have identical replacement costs if newly pro-
duced. Hence we refer to the two capitals as, respectively, blue machines and red machines.
However, we allow used machinery to have market prices that depend on the machine color
(blue or red). Capitals are non-malleable: the color of a machine cannot be altered. This
assumption allows for the possibility of different prices between blue and red machines. We
adopt discrete time and assume that individuals live for two periods.

If the prices of blue and red machines are always equal, the model reduces in essence to
the Diamond model adjusted to incorporate irreversible investment:

• In the steady state there is a unique overall capital to labor ratio, which is stable.
• If the overall capital to labor ratio is sufficiently high, then the price of used machinery is

below its reproduction cost and there is no new investment. Otherwise the prices of used
machines equal their reproduction costs. Once the economy enters the range in which
investment is positive, it does not return to the no-investment regime.

If, however, the price of blue machines is allowed to differ from that of red machines,
we have:

• The price of the lower-priced machine will become zero or negative in finite time, revealing
that this path is not a long-run perfect foresight competitive equilibrium trajectory.

• On the unique competitive equilibrium trajectory in which expectations are always ful-
filled, the price of red machines equals the price of blue machines at every date.

2. The Model

In each period, there is a generation of identical, old consumers and a generation of identical,
young consumers. Each young consumer inelastically supplies one unit of labor. The old do
not work. The labor force L grows at the rate n ≥ 0, so we have

Lt+1 = (1 + n)Lt, (1)

where Lt is the number of consumers born in year t = 0, 1, . . .. Consumers have identical
utility functions

u
(
x y

t , xo
t

) = log x y
t + β log xo

t ,

where x y
t is consumption when young and xo

t is consumption when old.

2See Magill and Quinzii (2003).
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Production is given by the 1-sector, 3-output, 3-input model:

Ct + Z1
t + Z2

t = Yt = (
K 1

t + K 2
t

)α
L1−α

t , (2)

where α is a scalar between 0 and 1, K 1
t > 0 and K 2

t > 0 are, respectively, the quantities of
blue machines and red machines, Yt > 0 is undifferentiated output, Ct ≥ 0 is consumption,
Z1

t ≥ 0 and Z2
t ≥ 0 are respectively gross investment in blue machines and red machines, all

at time t. Investment is irreversible and capital goods are non-malleable (i.e., blue machines
cannot be turned into red ones, nor vice versa) since Zi

t ≥ 0. Let µ > 0 be the rate of
depreciation on each type of machinery:

K i
t+1 = (1 − µ)K i

t + Zi
t , (3)

for i = 1, 2. Denote by lower case letters quantities normalized by L , e.g., kt = Kt/Lt , so
we have

ct + z1
t + z2

t = yt = (
k1

t + k2
t

)α
, (4)

and

(1 + n)ki
t+1 = (1 − µ)ki

t + zi
t , (5)

for i = 1, 2. Under competition, factors are rewarded by their marginal products, so we have

r i
t = α(k1

t + k2
t )

α−1 > 0, (6)

for i = 1, 2, and

wt = (k1
t + k2

t )
α − α(k1

t + k2
t )

α > 0, (7)

where r i
t is the rental rate on type-i capital and wt is the wage rate. Of course, blue machines

and red machines yield the same marginal product,

r1
t = r2

t = α
(
k1

t + k2
t

)α−1 = rt . (8)

We assume that individuals possess perfect foresight about price changes. Hence equi-
librium in the used machinery market requires that the rate of return (including capital gains)
on blue machines be equal to the rate of return on red machines, or

(1 − µ)p1
t+1 + r1

t+1

p1
t

= (1 − µ)p2
t+1 + r2

t+1

p2
t

= ρt+1, (9)

where pi ≥ 0 is the current price of machine i in terms of the consumption good. The
common rate of return is denoted by ρ. Equations (8) and (9) yield

(1 − µ)p1
t+1 + rt+1

p1
t

= (1 − µ)p2
t+1 + rt+1

p2
t

. (10)

The consumer chooses (x y
t , xo

t ) and savings st ≥ 0 to maximize

u(x y
t , xo

t ) = log x y
t + β log xo

t ,

subject to

x y
t = wt − st ,
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and

xo
t = ρt+1st ,

where 0 <β < 1 is the discount factor, “log” denotes the natural logarithm, and st is savings.
The consumer’s problem can be stated more succinctly:

max
st

log(wt − st) + β log(ρt+1st ), (11)

where 0 ≤ st ≤ wt . The solution to this problem is given by:

st = β

1 + β
wt . (12)

3. Competitive Equilibrium

Young consumers use their savings to buy capital that they will rent in period t and sell in
period t + 1. In competitive equilibrium, the supply of machinery must equal savings, or

(1 + n)
(

p1
t k1

t+1 + p2
t k2

t+1

) = β

1 + β
wt = β

1 + β
(1 − α)

(
k1

t + k2
t

)α
. (13)

Consumption per head is always positive, so we can normalize prices by the price of
current consumption. Under competition, firms will only produce goods with the highest
market price. Hence we have

max
(

p1
t , p2

t

) ≤ 1.

If max
(

p1
t , p2

t

)
< 1, then z1

t = z2
t = 0. If max

(
p1

t , p2
t

) = 1, then the machine with the
lower price will not be produced. If p1

t = p2
t = 1, then the composition of investment is

indeterminate. Define z by

zt = z1
t + z2

t ,

and σ by

σt = z1
t /zt .

We have

σt




= 1 if p1
t > p2

t and zt > 0

∈ [0, 1] if p1
t = p2

t and zt > 0

= 0 if p1
t < p2

t and zt > 0

undefined if zt = 0.

(14)

Definition 3.1. Given initial per capita capital stocks
(
k1

0, k2
0

)
, a long-run perfect-foresight

competitive equilibrium is given by the sequence of allocations
{
k1

t+1, k2
t+1, st , x y

t , xo
t

}∞
t=0

and the sequence of non-negative prices
{
r1

t , r2
t , wt , p1

t , p2
t

}∞
t=0 such that Equations (7), (8)

and (12), and the market-clearing conditions (10) and (13) are satisfied.
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4. Steady State

Since r1 = r2 = r , we have from (10) that p1 = p2. Unless max
(

p1
t , p2

t

) = 1,
(
k1

t + k2
t

)
must fall by (5). Hence we have

p1 = p2 = 1.

From (4) and (13), we derive the overall steady-state capital stock per head, k1 + k2, and
output per head, y, in the steady state:

k1 + k2 =
(

β

(1 + β)

(1 − α)

(1 + n)

) 1
1−α

,

y = (k1 + k2)α.

(15)

We see that (k1 + k2) and y are uniquely determined and positive but that k1 and k2 are
indeterminate. Summarizing we have:

Proposition 4.1. In the steady state, the overall capital to labor ratio (k1 + k2) and output
per worker y are uniquely determined, but σ = k1/(k1 + k2) is any number in [0, 1].

5. Existence and Uniqueness of the Competitive Equilibrium Trajectory

Given initial endowments, we will show that there is a competitive equilibrium path, which
is unique in

{
ct , yt , k1

t + k2
t , p1

t , p2
t

}∞
0 . First it is useful to show that if gross investment is

ever positive it will remain positive.

Proposition 5.1. If gross investment is strictly positive at time t, it will also be strictly
positive at time t + 1.

Proof. If zt > 0 then max
(

p1
t , p2

t

) = 1. Without loss of generality assume that p1
t = 1. If

p2
t = 1, the proof is trivial so consider p2

t < 1. Given this we have (1−µ)k1
t + p2

t (1−µ)k2
t <

β

1+β
(1 − α)

(
k1

t + k2
t

)α
and we want to show that

p1
t+1(1 − µ)k1

t+1 + p2
t+1(1 − µ)k2

t+1 <
β

1 + β
(1 − α)

(
k1

t+1 + k2
t+1

)α
.

First note that the no-arbitrage condition (10) immediately implies that since p1
t > p2

t

we must have
p1

t+1

p1
t

>
p2

t+1

p2
t

, which implies that p1
t+1 > p2

t+1. So it is enough to show that

(1 − µ)k1
t+1 + p2

t+1(1 − µ)k2
t+1 <

β

1 + β
(1 − α)

(
k1

t+1 + k2
t+1

)α
.

But if p1,t+1 = 1, we must have p2,t+1 < p2,t , so we only need to show that

(1 − µ)k1
t+1 + p2

t (1 − µ)k2
t+1 <

β

1 + β
(1 − α)

(
k1

t+1 + k2
t+1

)α
.

Using k2
t+1 = (1−µ)

(1+n)
k2

t we have

(1 − µ)

(
k1

t+1 + p2
t

(1 − µ)

(1 + n)
k2

t

)
<

β

1 + β
(1 − α)

(
k1

t+1 + (1 − µ)

(1 + n)
k2

t

)α

.
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After some rearranging and using k1
t+1 + p2

t (1 − µ)k2
t = β

(1+β)

(1−α)

(1+n)

(
k1

t + k2
t )

α, and

p2
t (1 − µ)k2

t
n

1+n > 0, it is immediate that it is enough to show that

(1 − µ)

(1 + n)

(
k1

t + k2
t

)α
<

(
β

(1 + β)

(1 − α)

(1 + n)

(
k1

t + k2
t

)α

+ (1 − µ)
(
1 − p2

t

)
k2

t − n
(1 − µ)

(1 + n)
k2

t

)α

,

which is equivalent to
(

1 − µ

1 + n

) 1
α

k1
t + p2

t (1 − µ)k2
t +

(
1 − µ

1 + n

) 1
α

k2
t <

β

(1 + β)

(1 − α)

(1 + n)

(
k1

t + k2
t

)α + 1 − µ

1 + n
k2

t ,

which is true because(
1 − µ

1 + n

) 1
α

k1
t + p2

t (1 − µ)k2
t <

β

1 + β

1 − α

1 + n

(
k1

t + k2
t

)α
,

and (
1 − µ

1 + n

) 1
α

k2
t <

1 − µ

1 + n
k2

t .

Proposition 5.2. The sequence of prices
{

p1
t , p2

t

}∞
t=0 such that p1

t = p2
t and the market

clearing condition (13) are satisfied is compatible with a competitive equilibrium.

Proof. Case 1. Suppose that

(1 − µ)k1
t + (1 − µ)k2

t <
β

1 + β
(1 − α)

(
k1

t + k2
t

)α
,

then new investment is positive and we have p1
t = p2

t = 1. The arbitrage condition is
automatically satisfied and the dynamics reduce to the dynamics of a standard Diamond
model with (

k1
t+1 + k2

t+1

) = β

(1 + β)

(1 − α)

(1 + n)

(
k1

t + k2
t

)α
.

Case 2. Now suppose we have

(1 − µ)k1
t + (1 − µ)k2

t ≥ β

1 + β
(1 − α)

(
k1

t + k2
t

)α
.

In this case investment cannot be strictly positive and prices should adjust so that

p1
t (1 − µ)k1

t + p2
t (1 − µ)k2

t = β

1 + β
(1 − α)

(
k1

t + k2
t

)α
,

with p1
t = p2

t ≤ 1. In period 1, we will have ki
t+1 = (1−µ)

(1+n)
ki

t , i = 1, 2, and
(
k1

t+1 + k2
t+1

)α =( 1−µ

1+n

)α(
k1

t + k2
t

)α
. So it is a matter of time for the inequality to flip, and the economy moves

to Case 1, where it will stay by the previous proposition.

Proposition 5.3. The equilibrium described in Proposition 5.2 is unique.
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Proof. We prove by contradiction. Without loss of generality assume that p1
t > p2

t . The

arbitrage condition tells us that (1 − µ)
p1

t+1

p1
t

+ rt+1
p1,t

= (1 − µ)
p2

t+1

p2
t

+ rt+1

p2
t

. Since p1
t > p2

t we

must have
p1

t+1

p1
t

>
p2

t+1

p2
t

. Since p1
t > p2

t , we must have p1
t+1 > p2

t+1, and then p1
t+2 > p2

t+2,

and so on. Therefore, if any new investment is made, it will be in capital 1 (blue machines).
Case 1. Suppose that

p1
t (1 − µ)k1

t + p2
t (1 − µ)k2

t <
β

1 + β
(1 − α)

(
k1

t + k2
t

)α
.

This implies that there is new investment in capital 1, and hence:

p1
t k1

t+1 = β

(1 + β)

(1 − α)

(1 + n)

(
k1

t + k2
t

)α − p2
t (1 − µ)k2

t ,

k2
t+1 = (1 − µ)

(1 + n)
k2

t ,

and

p1
t = 1.

Case 2. Suppose we have

p1
t (1 − µ)k1

t + p2
t (1 − µ)k2

t = β

1 + β
(1 − α)

(
k1

t + k2
t

)α
.

There is no new investment, p1
t ≤ 1 and ki

t+1 = (1−µ)

(1+n)
ki

t , i = 1, 2. It is a matter of time to
move to Case 1, where the economy will stay. So we can focus our attention in Case 1.

To rule out the possibility an equilibrium, we only need to show that in finite time p2 will
become negative. Since p1

t = 1 for all t , the arbitrage condition tells us that p2
t+1 − p2

t =
rt+1
1−µ

(
p2

t − 1
)
. Note that the right-hand side is negative and bounded away from zero. So in

finite time p2 will become negative.

6. Computed Examples — How Long Before the Bubble Bursts?

Our numerical exercises are inspired in part by Atkinson (1969).3 The parameter values used
in our computations are given in Table 1. In the 2-period-lifetime OG model we identify
“youth” with the working years and “old age” with the retirement years. Therefore, one
period in the OG model corresponds to roughly 20 years. So β = 0.6 corresponds to an
annual discount factor on the order of 97.5%, while µ = 0.55 corresponds to an annual
depreciation rate of about 4%.

Table 1. Assumed Parameter Values

α β µ n k1
0 k2

0

0.4 0.6 0.55 0 1 5

3See especially pp. 144–148.
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Table 2. Bubble-free Growth Path

t k1
t + k2

t p1
t = p2

t st zt

0 6 0.170639376 0.460726 0
1 2.7 0.275519122 0.334756 0
2 1.215 0.444860901 0.243228 0
3 0.54675 0.718284888 0.176725 0
4 0.246038 1.000 0.128405 0.017688
5 0.110717 1.000 0.093297 0.043474
6 0.093297 1.000 0.087122 0.045139
7 0.087122 1.000 0.084768 0.045563
8 0.084768 1.000 0.083845 0.045699
9 0.083845 1.000 0.083478 0.045748

10 0.083478 1.000 0.083332 0.045767
11 0.083332 1.000 0.083274 0.045774
12 0.083274 1.000 0.083250 0.045777
13 0.083250 1.000 0.083241 0.045778
14 0.083241 1.000 0.083237 0.045778
15 0.083237 1.000 0.083235 0.045779
16 0.083236 1.000 0.083235 0.045779
17 0.083235 1.000 0.083235 0.045779
18 0.083235 1.000 0.083235 0.045779

In Table 2, we display an efficient, bubble-free growth path. The initial overall capital
to labor ratio, k1

0 + k2
0, is large, so the initial gross investments are zero and initial prices

are below unity: p1
0 = p2

0 = 0.170639376. The total value of capital converges to its
equilibrium steady-state value: k1 + k2 = 0.083234658. There are no bubbles: p1

t = p2
t for

t = 0, 1, 2, . . .

In Figure 1, we present the evolution of
(
k1

t + k2
t

)
. After 6 periods, or about 120 years,

the steady state is nearly achieved. In Figure 2, p1
t = p2

t is plotted. In period zero, prices
of used machines are less than 1 and only in period 4 do they become 1. As we can see

k1+k2

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 1. Evolution of the Overall Capital/Labor Ratio on the Bubble-free Path
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p1 = p2

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

Figure 2. Evolution of Prices on the Bubble-free Path

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
saving (left axis) Gross Investment (right axis)

Figure 3. Evolution of Savings and Gross Investment on the Bubble-fee Path

in Figure 3, there is no gross investment as long as prices are smaller than 1. We plot the
trajectories of savings st (curve marked with squares) and gross investment zt (curve marked
circles). st declines with time, as total capital decreases. zt increases sharply in periods 4
and 5 and then quickly approaches its steady state value.

For Table 3, we perturb the previous exercise. Instead of setting p1
0 = p2

0 , we allow for
p2

0 to be slightly larger than p1
0. That is we introduce a positive red-machine “bubble”.

In Figure 4, the p1
t path is marked by circles, and the p2

t path is marked by squares. Since
p1

0 is smaller than p2
0, the yield for the different machines is different with

r

p1
0

>
r

p2
0

.

So, for the asset market to clear, the capital gains on red machines must be greater than the
capital gains on blue machines. The bubble on red machines must burst before period 10.

If the initial bubble is greater, then the bubble will burst more quickly. For example, if
p1

0 = 0.16 and p2
0 = 0.172767251, the bubble must burst by period 3.

We have investigated economies with parameter values different from those given in
Table 1. We have replaced µ = 0.55 with µ = 0.9, corresponding to a yearly depreciation
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Table 3. Red-machine Bubble Growth Path

t k1
t k2

t p1
t p2

t st zt

0 1 5 0.170639000 0.170639451 0.460726 0
1 0.45 2.25 0.275517436 0.275519459 0.334756 0
2 0.2025 1.0125 0.444853339 0.444862414 0.243228 0
3 0.091125 0.455625 0.718250971 0.718291671 0.176725 0
4 0.041006 0.205031 0.999826513 1.000 0.128405 0.017692
5 0.018453 0.109956 0.999298119 1.000 0.098997 0.041219
6 0.008304 0.090699 0.996799366 1.000 0.089216 0.044676
7 0.003737 0.085491 0.98467151 1.000 0.085582 0.045455
8 0.001682 0.083926 0.925127357 1.000 0.084176 0.045709
9 0.000757 0.083476 0.631441715 1.000 0.083632 0.045853

10 0.000341 0.083417 < 0 1.000 0.083444

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

p1 p2

Figure 4. Bubble Prices

rate of 10%. The initial prices consistent with bubble-free competitive equilibrium are p1
0 =

p2
0 = 0.767 877 191. In period 1, we have p1

1 = p2
1 = 1.00 After 5 periods, (k1

t + k2
t )

becomes close to its steady state value (k1 + k2) = 0.08323. If we have a small bubble
on red machines, given by p1

0 = 0.767 877 and p2
0 = 0.767 877 230, then by period 6, p1

t

becomes negative. Hence the red machine bubble must burst by period 6.
It is not surprising that the higher is the depreciation rate the quicker the bubble will burst.

The larger are the depreciation rates, other things equal, the smaller are the capital gains.
Hence changes in the prices will have to be even bigger to compensate for the differences in
the yields on the machines, leading to shorter lived bubbles. If the depreciation rate is 100%,
there would be no capital gains and there would be no room for perfect-foresight bubbles.

7. Concluding Remarks

Blue machines are technologically identical to red machines. The central planner and the
representative infinitely-lived agent are indifferent to the color of machinery. The shadow
price of a blue machine is equal to the shadow price of a red machine on the optimal trajectory.
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We investigate prices and capital gains (and losses) on blue machines and red machines
in a simple OG model. On the unique competitive path in which expectations are always
fulfilled, the market price of blue machines is always equal to the market price of red
machines. If there are complete futures markets in machinery, then this bubble-free path is
the only one that will be pursued. But we are talking here about a large (potentially infinite)
number of futures markets.

In the real world, futures markets extend out to only a few years at most. In our computed
examples, bubble-trajectories will eventually be revealed to be disequilibrium paths, but
only after decades or more. The question remains: Does the ownership economy steer away
from bubbles that eventually burst? If so, how is this accomplished? If not, what are the
consequences for public policy?

8. Biographical Note

Our particular model has important antecedents: (1) The technology is essentially that of
Shell–Stiglitz (1967)4 except that the present paper employs discrete time and explicitly
allows for irreversible capital so that Tobin’s q can be less than unity.5 Except for the
introduction of 2 capitals and the irreversibility of investment, we are using the OG model
of Diamond (1965).6
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