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We analyze a banking system in which the class of feasible deposit
contracts, or mechanisms, is broad. The mechanisms must satisfy a
sequential service constraint, but partial or full suspension of con-
vertibility is allowed. Consumers must be willing to deposit, ex ante.
We show, by examples, that under the so-called “optimal contract,”
the postdeposit game can have a run equilibrium. Given a propensity
to run, triggered by sunspots, the optimal contract for the full pre-
deposit game can be consistent with runs that occur with positive
probability. Thus the Diamond-Dybvig framework can explain bank
runs as emerging in equilibrium under the optimal deposit contract.

I. Introduction

The theoretical literature on bank runs is based on the early work of
Bryant (1980) and the now-classic model of Diamond and Dybvig
(1983). When simple deposit contracts are used, the contract supporting
the efficient allocation is shown to support a bank-run equilibrium as
well. However, when convertibility is suspended, the bank-run equilib-
rium is eliminated. The current state of the art is work by Green and
Lin (2000a, 2000b), inspired in part by Wallace (1988, 1990). Green
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and Lin allow for a broad class of banking contracts. Because there is
aggregate uncertainty, the sequential service constraint precludes
achieving the full-information first-best. They show that the mechanism
that supports the constrained-efficient allocation does not permit bank-
run equilibria. Thus the literature that started with Diamond-Dybvig is
unable to explain bank runs until now. Bank runs are historical facts.
If bank runs were impossible, then much of banking policy would be
directed toward a nonissue. Our goal is to put “runs” back in the bank-
runs literature. In particular, we investigate the possibility of equilibrium
runs on banks that can write sophisticated contracts in which the current
withdrawal depends on the history of withdrawals. We provide the first
examples in the Diamond-Dybvig literature in which a bank run can
occur in equilibrium under the optimal deposit contract within a broad class
of mechanisms that includes suspension schemes.1 We show by examples that,
for some parameters, the mechanism that supports the constrained-
efficient allocation for the postdeposit game also permits a run equi-
librium. The nonrun equilibrium to the postdeposit game is also an
equilibrium to the predeposit game. The run equilibrium is not, because
consumers would not make deposits if they knew that a bank run would
follow. If bank runs are triggered by sunspots, then the optimal contract
to the predeposit game can have a run equilibrium if the propensity to
run is small. For greater propensities to run, the optimal contract to
the predeposit game is immune to runs, but the welfare of the con-
strained-efficient allocation may not be achievable.

The intuition for our results is that the “optimal contract” maximizes
welfare subject to an incentive compatibility constraint, which requires
a patient consumer to weakly prefer choosing period 2 to period 1. This
incentive compatibility constraint presupposes that the other patient
consumers choose period 2. If, instead, the other patient consumers
are believed to choose period 1, it is possible that our patient consumer
would prefer to choose period 1, in which case there is a run equilibrium
to the postdeposit game.

There are two important distinctions between our model and the
model of Green and Lin (2000a, 2000b) that explain the differences in
the results: (1) We allow the utility functions, of period 1 consumption
for the impatient and of period 2 consumption for the patient, to differ
across the two types; Green and Lin do not. Thus we allow the incentive
compatibility constraint to bind at the optimal contract. (2) Green and
Lin assume that the consumer knows the clock time at which she arrives
at the bank, which tells her roughly her position in the queue. Knowing

1 Diamond and Rajan (2001) develop a model in which the possibility of a bank run
affects bankers’ bargaining power in renegotiating loan contracts with borrowers. If a run
occurs, depositors capture the loans and renegotiate with borrowers directly. However, it
is the threat of a run that disciplines bankers, and a run cannot occur in equilibrium.
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the time is crucial to their backward induction argument. We have no
clock. We assume that the consumer decides whether to withdraw or
not, knowing her type (patient or impatient) but not knowing her place
in line. Once made, her withdrawal decision is irrevocable.

There is a difference between Green and Lin’s model and ours that
is not crucial. Green and Lin consider direct revelation mechanisms in
which all consumers sequentially report their types to the bank as they
arrive in period 1. For example, when someone reports “patient,” the
bank can give her consumption in period 2 but use the information to
affect the period 1 consumption of consumers arriving later in the queue
and reporting “impatient.” In our model, consumers with no intention
of withdrawing money in period 1 do not contact the bank. We think
of the mere arrival at the queue as essentially a report of “impatient.”
It is hard to imagine people visiting their bank for the purpose of telling
them that they are not interested in making any transactions at the
present time. In our indirect mechanisms, a consumer’s strategy is sim-
ply a choice of which period to visit the bank. However, in Appendix
B we adapt our basic model to incorporate complete reporting à la
Green and Lin. We show by example that, for some parameters, the
direct-revelation mechanism supporting the (new) constrained-efficient
allocation also permits a run equilibrium.

In Section II, we describe the postdeposit game. In Section III, we
present a two-consumer example in which the constrained-efficient al-
location is supported by a contract that also allows for a run equilibrium.
In Section IV, we assume that consumers observe a sunspot variable after
making a deposit but before choosing when to visit the bank. We show
that there can be an equilibrium to the full predeposit game, based on
the contract that supports the constrained-efficient allocation in the
postdeposit game, that entails a positive probability of runs. For the
example of Section III, we calculate in Section IV the highest probability
of a bank run such that the bank cannot improve welfare by changing
the mechanism to eliminate equilibrium runs. Above this critical prob-
ability, the optimal contract to the predeposit game does not permit a
run equilibrium; however, welfare is lower than under the constrained-
efficient allocation. In Section V, we make our concluding remarks. In
Appendix A, we show that our basic result about the postdeposit game,
namely that the contract that supports the constrained-efficient allo-
cation also permits a run equilibrium, extends to the case with many
consumers and correlated types. In Appendix B, we show that our basic
result is robust to allowing direct revelation mechanisms à la Green and
Lin, where patient as well as impatient consumers contact the bank in
period 1.



106 journal of political economy

II. The Model

There are three periods and a finite number of consumers (the potential
bank depositors), N. In period 0, each consumer is endowed with y units
of the consumption good. Let a denote the number of impatient con-
sumers: each of them derives utility only from consumption in period
1. The remaining consumers are patient: each of them derives utility
from consumption in period 2. Patient consumers can costlessly store
consumption across periods. Let denote consumption received in pe-1c
riod 1 and let denote consumption received in period 2. Impatient2c
and patient consumers, respectively, have the utility functions and1u(c )

We assume that u and v are strictly increasing, strictly concave,1 2v(c � c ).
and twice continuously differentiable and that the coefficients of relative
risk aversion are less than minus one, or

′′ ′′xu (x) xv (x)
! �1, ! �1, (1)′ ′u (x) v (x)

for each positive x. Impatient and patient consumers can have different
utility functions, motivated by time preference or the interpretation that
impatient consumers face extraordinary consumption opportunities.

Let denote the probability that the number of impatient con-f(a)
sumers is a, for A consumer’s type, impatient or patient,a p 0, 1, … , N.
is her private information. In keeping with our assumption that con-
sumers are identical, ex ante, assume that, conditional on a consumer’s
being patient, the probability that the number of impatient consumers
is a, denoted by is the same for all consumers. Using Bayes’ rule,f (a),p

we can calculate this as

[1 � (a/N )]f(a)
f (a) pp N�1 ′ ′

′� [1 � (a/N )]f(a )a p0

for We have the following process in mind. First, naturea p 0, 1, … , N.
chooses a according to f. Then nature randomly chooses the set of
impatient consumers so that, conditional on a, each consumer is equally
likely to be impatient. Notice that this overall process allows for cor-
relation among types but also admits the independent and identically
distributed (i.i.d.) case.

The investment technology is described as follows. Investing one unit
of period 0 consumption yields units if held until period 2 andR 1 1
yields one unit if harvested in period 1. So far, the only main departure
from the Diamond-Dybvig model is that the utility function can depend
on a consumer’s type.2

Following the literature, we focus for the moment on the postdeposit

2 See also Jacklin (1987) for an extension in this direction.
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game, mindful of the fact that if a bank run is anticipated to occur with
probability one, no consumer would be willing to deposit in period 0.
In Section V, we introduce sunspots and analyze equilibrium runs in
the full (predeposit) game.3 In period 0, the bank designs a deposit
contract, which we call the banking mechanism. We assume that the
bank seeks to maximize the ex ante expected utility of consumers. To
the extent that banking is perfectly competitive, any bank attracting
depositors must act in this manner.

Here is the timing of the postdeposit game, which starts after the
banking mechanism is in place and consumers have deposited their
endowments. At the beginning of period 1, each consumer learns her
type and decides whether to arrive at the bank in period 1 or period
2. We require that the mechanism satisfy the following sequential service
constraint. Consumers who choose period 1 are assumed to arrive in
random order. Let zj denote the position of consumer j in the queue.
Because of the sequential service constraint, consumption in period 1
must be allocated to consumers as they arrive at the head of the queue,
as a function of the history of transactions up until that point. We further
assume that consumer j’s withdrawal can be a function only of her
position, zj. That is, we consider indirect mechanisms in which a con-
sumer’s strategy is a choice of round, as a function of her type. Arrival
in period 1 can be interpreted as a report that the consumer is impatient,
but no explicit reports are made.

For let denote the period 1 withdrawal of con-1z p 1, … , N, c (z)
sumption by the consumer in arrival position z. Since optimal mecha-
nisms induce the patient consumers to choose period 2 and since giving
period 1 withdrawers more consumption in period 2 hurts incentive
compatibility for the patient (and does not help the impatient), re-
maining resources in period 2 are allocated to consumers who choose
period 2. Because of the concavity of v, we can restrict attention to
mechanisms that smooth second-period consumption. Therefore, let

denote the second-period consumption to those who choose to2c (a )1

wait until period 2, when the number of consumers choosing period 1
is a1, for (Under “truth telling,” the impatient anda p 0, … , N � 1.1

only the impatient choose period 1, and we would then have )a p a.1

The resource condition can be written as

a N�111[Ny �� c (z)]Rzp12 1 1c (a ) p , c (N ) p Ny � c (z). (2)�1 N � a zp11

3 Diamond and Dybvig (1983) are aware of this point and mention the possibility that
sunspots could allow runs to occur with small probability, thereby maintaining the incentive
to deposit. See also Cooper and Ross (1998).
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Thus the banking mechanism, m, could be described by the vector
1 1 1 2 2m p (c (1), … , c (z), … , c (N ), c (0), … , c (N � 1)),

with the interpretation given above. Notice that m satisfies the sequential
service constraint because the zth consumer to arrive in period 1 receives
consumption that depends solely on her place in line. In particular,

does not require information about people behind her in line. Let1c (z)
the set of banking mechanisms be denoted by M. Then we have

2NM p {m � � : (2) holds for a p 0, … , N � 1}.�

Our set of deposit contracts or mechanisms is fairly broad and allows
for partial or full “suspension of convertibility.” However, our class of
indirect mechanisms is different from the direct mechanisms considered
by Green and Lin (2000a, 2000b). In their model, both patient and
impatient consumers arrive at the bank in period 1, at random times,
and report their type. In addition to resource constraints and incentive
compatibility, their mechanism must also satisfy sequential service. It is
consistent with their sequential service constraint to let depend on1c
how many patient as well as impatient reports have been made earlier.
We focus on indirect mechanisms, in which consumers choose when to
arrive but do not make explicit reports. Another difference between
our model and that of Green and Lin is that they assume the existence
of a “clock,” so that consumers roughly know their place in line. The
clock allows Green and Lin to rule out equilibrium bank runs, by iterated
elimination of strictly dominated strategies. Intuitively, a patient con-
sumer who arrives with one second left on the clock will be last in line
with high probability. In that case, she prefers to report her type truth-
fully (i.e., receive consumption in period 2) since whatever has not been
harvested will yield the higher return, R. Then a patient consumer who
arrives with two seconds left on the clock will know that later-arriving
consumers report truthfully, which they show implies that this consumer
should report truthfully. Then a patient consumer who arrives with three
seconds left on the clock will report truthfully, and so on. We assume
that consumers choose when to arrive knowing only whether they are
patient or impatient, with no clock.

Definition 1. Given a mechanism the postdeposit game ism � M,
said to have a run equilibrium if there is a Bayes-Nash equilibrium in
which all consumers choose to withdraw in period 1, independent of
the realization of their type.

Given a mechanism 1 1 1 2m p (c (1), … , c (z), … , c (N ), c (0), … ,
and a corresponding equilibrium, ex ante consumer welfare2c (N � 1))

is defined as the sum of the expected utilities of the consumers. The
mechanism that supports the symmetric constrained-efficient allocation
requires that impatient consumers choose period 1 and patient con-



equilibrium bank runs 109

sumers choose period 2. When impatient consumers choose period 1
and patient consumers choose period 2, we denote ex ante consumer
welfare under mechanism m as Using the resource condition,Ŵ(m).
(2), we can write ex ante consumer welfare as a function of 1(c (1),

given by1… , c (N � 1)),

N�1 a a 1[Ny �� c (z)]Rzp11Ŵ(m) p f(a) u(c (z)) � (N � a)v� � ( )[ ]N � aap0 zp1

N�1 N�1

1 1� f(N ) u(c (z)) � u Ny � c (z) . (3)� �( )[ ]
zp1 zp1

When all patient consumers choose period 1, we denote ex ante
consumer welfare under mechanism m as given byrunW (m),

N N N
a N � arun 1 1W (m) p f(a) u(c (z)) � v(c (z)) . (4)� � �[ ]N Nap0 zp1 zp1

The so-called “optimal contract” will induce the patient consumers
to choose period 2 and therefore must solve the following incentive
compatibility constraint:

N�1 a�1 N�1 a 1[Ny �� c (z)]R1 zp11f (a) v(c (z)) ≤ f (a)v . (5)� � �p p ( )[ ]a � 1 N � aap0 zp1 ap0

Thus, the “optimal contract” solves4

ˆmax W(m)
1 1(c (1), …, c (N�1))

subject to (5). (6)

We place quotation marks around “optimal contract” because we shall
see that the solution to the planner’s problem (6), which we denote as

could have a run equilibrium. However, (6) presupposes that the∗m ,
run equilibrium is never chosen. If the run equilibrium is chosen with
positive probability, then may not be optimal when the possibility∗m
of a run is taken into account. These issues are explored in Section IV,
where we would call the zero-optimal mechanism, referring to the∗m
situation in which the propensity to run is zero.

Let l denote the Lagrangean multiplier on constraint (5). Then in

4 Of course, one must check that the nonnegativity constraints are satisfied as well.
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the planner’s problem (6), the necessary conditions for an optimum
are, for â p 0, … , N � 1,

N�1 a 1[Ny �� c (z)]Rzp1′ 1 ′ˆf(a) u (c (a)) � Rv� ( )[ ]N � aˆapa

′ 1 ′ 1ˆ� f(N )[u (c (a)) � u (c (N ))]
N�1 a 1[Ny �� c (z)]R �Rzp1′� l f (a) v� p ( ) ( ){ [ N � a N � aˆapa

1′ 1 ˆ� v (c (a)) p 0 (7)( )]}a � 1

and

N�1 a 1[Ny �� c (z)]Rzp1
l f (a)v� p ( ){ N � aap0

N�1 a�11 1� f (a) v(c (z)) p 0. (8)� �p [ ]}a � 1ap0 zp1

Incentive compatibility when the other patient consumers choose pe-
riod 2 is in general different from incentive compatibility when the
other patient consumers choose period 1. If a patient consumer prefers
to choose period 1 when other patient consumers choose period 1, we
have a run equilibrium. Therefore, might have a run equilibrium,∗m
which occurs when we have

N N�11 1 1v(c (z)) ≥ v Ny � c (z) R . (9)� �[ ]( )N zp1 zp1

III. A Two-Consumer, I.I.D. Example

We now present an example for which we calculate the “optimal con-
tract” and show that the corresponding postdeposit game has a run∗m
equilibrium. There are two consumers, each consumer is im-N p 2;
patient with probability p and patient with probability Types are1 � p.
uncorrelated. Let be denoted by c. Then the expression for welfare1c (1)
simplifies to

2Ŵ p p [u(c) � u(2y � c)] � 2p(1 � p)[u(c) � v((2y � c)R)]
2� 2(1 � p) v(yR). (10)
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The incentive compatibility constraint (5) simplifies to

v(c) v(2y � c)
p � � (1 � p)v(c) ≤ pv((2y � c)R) � (1 � p)v(yR), (11)[ ]2 2

and the condition for a run equilibrium (9) simplifies to

v(c) v(2y � c)
� ≥ v((2y � c)R). (12)

2 2

Proposition 1. For some economies, a run equilibrium exists at the
“optimal contract” ∗m .

Proof. Let the utility functions be given by

1�a 1�bAx x
u(x) p , v(x) p .

1 � a 1 � b

We shall find parameters A, a, b, p, R, and y for which the first-order
conditions are necessary and sufficient for a solution to the planner’s
problem. Then we shall solve for the optimal mechanism and show that
condition (12) holds. Let 1A p 10, a p 1.01, b p 1.01, p p , R p

2
and The solution to the planner’s problem5 is given by1.05, y p 3.

c p 3.1481, l p 4.0795. (13)

Since the incentive compatibility constraint is binding and there is a
single choice variable, c is found by solving (11), expressed as an equa-
tion rather than as an inequality.

It is easy to verify that, for these parameter values, the objective func-
tion is concave in c and the incentive compatibility constraint (left side
minus right side) is increasing in c. Because strictly monotonic functions
of a single variable are quasi-convex, it follows that the second-order
conditions are satisfied. Thus (13) constitutes a solution to the planner’s
problem. The left side of (12) exceeds the right side, the difference
being 0.000597, so has a run equilibrium. Q.E.D.∗m

The solution to the planner’s problem (6), is given by∗ 1m , c (1) p
1 2 23.1481, c (2) p 2.8519; c (0) p 3.1500, c (1) p 2.9945.

There is a nonrun equilibrium of the postdeposit game in which all
patient consumers choose period 2. The first impatient consumer would
receive 3.1481 units of consumption in period 1, and the second im-
patient consumer would receive 2.8519 units in period 1. Thus we have
partial suspension of convertibility, as in Wallace (1990) and Green and
Lin (2000a, 2000b). Patient consumers receive 3.1500 units in period 2
if there are no impatient consumers and 2.9945 units in period 2 if

5 The computations were performed using Maple V, release 5.1. Details are available
from the authors.
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there is one impatient consumer. Welfare, renormalized to be Ŵ �
is given by ∗ˆ1,088, W(m ) p .27396.

At the run equilibrium of the postdeposit game, consumers receive
with probability one-half, and they receive1 1c (1) p 3.1481 c (2) p

with probability one-half. For these parameter values, renor-2.8519
malized welfare can be calculated as run ∗W (m ) p .00519.

Our example is very simple. There are only two consumers, and im-
patience is i.i.d. In Appendix A, we analyze an example with 300 con-
sumers, with three possible realizations for a. Thus impatience is cor-
related across consumers, and each consumer is small relative to the
market. For appropriately chosen parameters, we have as before that
the optimal contract for also permits a run equilibrium.Ŵ(m)

We do not allow the bank to ask people to wait in line to declare
themselves to be patient. We believe that to do so would be unrealistic.
The question, then, is whether or not this is the source of run equilibria
for Appendix B answers this question in the negative. We redo our∗m .
two-consumer, i.i.d. example to require all consumers to join in the
queue in period 1 and declare themselves to be impatient or patient.
For appropriately chosen parameters, the “optimal direct revelation
mechanism” differs from the “optimal contract,” but it also permits a
run equilibrium.

IV. Sunspots and the Propensity to Run

Strictly speaking, run equilibria in Diamond and Dybvig (1983) are not
equilibria at all, because consumers would not agree to the original
contract if they knew that a run would take place (see Postlewaite and
Vives 1987). Diamond and Dybvig suggest that a run could take place
in equilibrium with positive probability, triggered by some extrinsic ran-
dom variable “sunspots,” as long as the probability of the run is suffi-
ciently small. Here we formalize this notion by defining the predeposit
game and calculate what “sufficiently small” is for an example.6

Here is the timing of the predeposit game, which takes place after
the bank announces its mechanism. In period 0, consumers decide
whether or not to deposit.7 At the beginning of period 1, each consumer
learns her type after observing a sunspot variable, j, distributed uni-

6 Cooper and Ross (1998), restricting themselves to simpler contracts, also model runs
being triggered by sunspots.

7 A consumer could invest her endowment herself instead of dealing with the bank.
However, we do require that unharvested “trees” cannot be traded. This is to rule out the
case in which a patient depositor (claiming to be impatient) trades period 1 consumption
withdrawn from the bank for unharvested trees. Jacklin (1987) has shown that such a
market undermines the optimal contract, and his argument applies to our setting as well.
Ruling out this asset market is merely to posit that only banks can provide the liquidity
necessary to pay for period 1 consumption (see Diamond 1997).
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formly on [0, 1].8 Sunspots do not affect preferences, the likelihood of
being impatient, endowments, or technology. Now the period in which
a consumer arrives can depend on the realization of the sunspot variable
j as well as the realization of her type. We assume that the bank cannot
choose a withdrawal schedule that directly depends on j.9 To facilitate
the comparison between the predeposit game and the postdeposit game,
we take the space of mechanisms, M, to be the same in both games.10

Definition 2. Given a mechanism the predeposit game ism � M,
said to have a run equilibrium if there is a subgame-perfect Nash equi-
librium in which (i) consumers are willing to deposit, and (ii) for some
set of realizations of j occurring with positive probability, all consumers
choose to withdraw in period 1, independent of the realization of their
type.

Proposition 2. Consider a mechanism for which the post-m � M,
deposit game has an equilibrium in which all patient consumers choose
period 2, yielding welfare strictly higher than welfare under autarky.11

Then the predeposit game has a run equilibrium if and only if the
postdeposit game has a run equilibrium.

Proof. Let the predeposit game have a run equilibrium under the
mechanism m. Then for some realizations of j, all consumers choose
period 1 in the subgame after deposits are made and j is observed.
Since this subgame must be in equilibrium and since the subgame is
identical to the postdeposit game, there must be an equilibrium to the
postdeposit game in which all consumers choose period 1. Thus the
postdeposit game has a run equilibrium.

Let the postdeposit game have a run equilibrium under the mecha-
nism m. Construct a run equilibrium to the predeposit game as follows.
First, consumers deposit their endowment. Next, consumers withdraw
as follows. For all consumers choose period 1. For impatientj ! s, j ≥ s,
consumers choose period 1 and patient consumers choose period 2.
Each subgame, after deposits are made and j is observed, is in equilib-
rium. It is an equilibrium for all consumers to choose period 1 when
we have because the postdeposit game has a run equilibrium. Itj ! s
is an equilibrium for impatient consumers to choose period 1 and pa-

8 Uniformity is assumed without loss of generality.
9 The bank cannot observe the event triggering the run. Either the bank cannot observe

the sunspot variable itself or it does not know which values of j will trigger a run equi-
librium (if one exists).

10 Strictly speaking, a mechanism for the predeposit game should specify outcomes as
a function of the number of depositors. For the predeposit game we interpret asm � M
providing autarky consumption (y in period 1 and Ry in period 2) unless all N consumers
deposit. Introducing more complicated mechanisms of the form does not changem(n)
our results and does not appear to add further insights, so we avoid this complication.

11 Under autarky, an impatient consumer receives y units of consumption, and a patient
consumer receives Ry units of consumption.
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tient consumers to choose period 2 when we have because thej ≥ s
postdeposit game is assumed to have an equilibrium in which all patient
consumers choose period 2. Finally, for sufficiently small s, consumers
are willing to deposit. The reason is that overall ex ante welfare is

where is welfare in the run equilibriumrun runˆsW (m) � (1 � s)W(m), W
and is welfare in the no-run equilibrium. For sufficiently small s,Ŵ
welfare strictly exceeds welfare under autarky, so each consumer is will-
ing to deposit if other consumers deposit. Q.E.D.

If the planner is unable to choose the equilibrium he likes, the truly
optimal mechanism should depend on how consumers select among
multiple equilibria to the postdeposit games. Since we are looking for
optimal mechanisms, we restrict attention to mechanisms with an equi-
librium in which all patient consumers choose period 2. We suppose
that the economy has a propensity to run in the following sense. Whenever
we have all consumers choose to arrive at the bank in period 1,j ! s,
whenever the postdeposit game admits a run equilibrium. If the post-
deposit game does not have a run equilibrium, then all patient con-
sumers choose period 2. When we have the equilibrium is selectedj ≥ s,
in which all patient consumers wait for the second period. Such an
economy is said to have a propensity to run s. The fully optimal mech-
anism now depends on the parameter s.

Definition 3. Given a mechanism m and a propensity to run s, ex
ante welfare for the predeposit game, denoted as is given byW(m, s),

W(m, s) p (14)

run ˆsW (m) � (1 � s)W(m) if m has a run equilibrium
ˆ{W(m) if m does not have a run equilibrium.

The mechanism that maximizes subject to the incentive com-W(m, s)
patibility constraint (5) is called the s-optimal mechanism.

We now show that, for the example of Section III, the s-optimal mech-
anism has a run equilibrium for sufficiently small s. Furthermore, we
shall calculate the cutoff value of s below which the s-optimal mechanism
has a run equilibrium. This formalizes the idea that, if the probability
of a run is sufficiently small, the optimal mechanism tolerates bank runs.
Altering the mechanism to eliminate the possibility of a run leads to
lower welfare.

Proposition 3. For some economies with a sufficiently small pro-
pensity to run, s, the optimal mechanism for the predeposit game has
a run equilibrium.

Proof. Consider the predeposit game for the economy of Section III.
Since patient consumers choose period 2 when incentive com-j ≥ s,
patibility condition (11) must hold. It is shown in Section III that (11)
holds as an equality at the optimal mechanism to the postdeposit game,
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TABLE 1

The “Optimal Contract” ∗m
1c (1) p 3.1481 1c (2) p 2.8519
2c (0) p 3.1500 2c (1) p 2.9945

Best Mechanism Immune from Runs: mno-run

1c (1) p 3.1463 1c (2) p 2.8537
2c (0) p 3.1500 2c (1) p 2.9964

which is the zero-optimal mechanism for the predeposit game. Thus
incentive compatibility must bind and (11) must hold as an equality for
sufficiently small s, by continuity. It follows that for sufficiently small s,
the s-optimal mechanism is characterized by the unique c solving (11),
which is calculated in Section III. By continuity, can be∗m , W(m, s)
made arbitrarily close to .27396 for sufficiently small s, which exceeds
welfare under autarky, .066841. Thus consumers are willing to deposit.
Since has a run equilibrium for the postdeposit game, it also has a∗m
run equilibrium for the predeposit game. Q.E.D.

For general economies, computation of the s-optimal mechanism
might be difficult. Even if incentive compatibility binds and s is small,
the s-optimal mechanism might depend on s (and differ slightly from

). The proof of proposition 3 is simplified considerably by the fact∗m
that a mechanism for the example of Section III is characterized by the
single variable c. A binding incentive compatibility constraint completely
pins down the mechanism, so the s-optimal mechanism is independent
of s for small s. Given the structure of our example, we can determine
the s-optimal mechanism for all as follows.s � [0, 1]

For small s, the s-optimal mechanism for our example economy is
as argued in the proof of proposition 3. As s increases, the welfare∗m ,

under falls, because a bank run is more and more likely to occur∗m
in equilibrium. Eventually, the propensity to run becomes high enough
so that is inferior to the best mechanism that is immune to runs,∗m
characterized by the unique c for which (12) holds as an equality.12 We
denote this mechanism as mno-run. The two mechanisms are compared
in table 1.

Under when the system is working appropriately and there is no∗m ,
bank run, welfare is .27396. However, the system is fragile, and∗Ŵ(m )
when a run occurs, welfare is .00519. Under mno-run, the systemrun ∗W (m )
is immune from runs, and the unique equilibrium is for the patient
consumers to choose period 2; welfare is .27158. When theno-runŴ(m )

12 Since welfare is increasing in c for all c satisfying inequality (12), the best mechanism
immune to runs must satisfy (12) as an equality.
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propensity to run is small enough, the s-optimal mechanism overall will
be since with high probability consumers select the equilibrium in∗m ,
which patient consumers wait until period 2. The small probability of
a run does not warrant the discrete reduction in so that the con-1c (1),
dition for a run equilibrium, (12), is not satisfied. However, if the pro-
pensity to run crosses a threshold, the optimal mechanism switches to
mno-run.13 We are now in a position to calculate the cutoff value, s0, where
the s-optimal mechanism is for and the s-optimal mechanism∗m s ! s ,0

is mno-run for s 1 s .0

For our example, we can calculate the largest propensity to run con-
sistent with the s-optimal mechanism having a run equilibrium to the
predeposit game. Solving

∗ run ∗ no-runˆ ˆ(1 � s )W(m ) � s W (m ) p W(m )0 0

yields so the economy will tolerate the occurrence of as p .008848,0

bank run with probability .008848. That is, if consumers have a pro-
pensity to run below .008848, the optimal mechanism accepts this, and
the equilibrium probability of a run, at the optimal mechanism, is .008848.
On the other hand, if consumers have a propensity to run above .008848,
the s-optimal mechanism is immune from runs because the stronger
incentive compatibility constraint is imposed (i.e., [12] holds as an
equality). This trade-off between fragility and efficiency is depicted in
figure 1. The downward-sloping line depicts ex ante welfare based on
randomizing over the run and the no-run equilibria to The hori-∗m .
zontal line depicts welfare based on the best contract immune from
runs, mno-run. Welfare at the s-optimal mechanism, as a function of s, is
given by the upper envelope (shown in bold) of the two lines in figure
1.

All these calculations are based on a special assumption about con-
sumer beliefs, as reflected in our notion of propensity to run. Consumers
expect a run with (exogenous) probability s if and only if the mechanism
has a run equilibrium. Other rational expectations are possible. For
example, the probability of a run might depend on the magnitude of
the incentive to choose period 1. If a patient consumer has only a slight
preference for period 1 during a run, then the probability of a run
might be reduced. In general, the propensity to run could depend on
the mechanism, which could enrich the problem of finding the optimal
contract.

13 A third possibility must be considered in which the mechanism admits a run equilib-
rium but incentive compatibility does not bind and inequality (11) is strict. This is con-
ceivable because relaxing (11) is beneficial when a run occurs. However, for our example,
any such mechanism is dominated by unless s is close to one, in which case m no-run is∗m
superior.
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Fig. 1.—The s-optimal mechanism: welfare (in bold) as a function of the propensity to
run.

This discussion is related to the literature on financial fragility. The
costs associated with occasional equilibrium bank runs are the downside
of financial fragility in our model. However, when the system is working
smoothly and the equilibrium in which patient consumers choose period
2 is selected, a fragile system is more efficient. When the propensity to
run is below s0, this trade-off leads to tolerating a fragile system. When
the propensity to run is above s0, the cost of financial fragility is too
high, and it is better to establish a stable system. See the papers by Allen
and Gale (2000) and Lagunoff and Schreft (2001) for an analysis of
financial crises based on local interactions. See also Champ, Smith, and
Williamson (1996) for an analysis of banking panics and Kiyotaki and
Moore (1997) for a study of credit cycles.

V. Concluding Remarks

We have shown that the possibility of equilibrium bank runs does not
depend on a simple and suboptimal specification of the deposit contract
or mechanism. There are economies in which the optimal mechanism,
within a broad class that includes suspension schemes, induces a post-
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deposit game with a run equilibrium. To eliminate this run equilibrium
would require a sacrifice of welfare, as compared to the equilibrium in
which the patient consumers wait. By introducing sunspots that trigger
the bank run, we construct an example in which the optimal mechanism
tolerates a positive probability of a run. We calculate, for our simple
example, the highest probability of a run that can be tolerated, above
which the planner should take steps to eliminate runs. Equilibrium bank
runs are consistent with large economies and correlated types.

Which types of economies will tolerate runs? One requirement is that
there be significant uncertainty about the aggregate number of impa-
tient and patient consumers. If a were known, suspension of converti-
bility would eliminate the run equilibrium while preserving the no-run
equilibrium.14 A second requirement is that the utility functions reflect
a high degree of “impulse demand” by the impatient consumers, relative
to R. The impatient must be well treated at the constrained-efficient
allocation, providing the temptation to join a run. A third requirement
is that a patient consumer’s incentive to choose period 1 when other
patient consumers choose period 1 is greater than a patient consumer’s
incentive to choose period 1 when other patient consumers choose
period 2. Unfortunately, translating this condition on the optimal con-
tract to a condition on the parameters of the economy is difficult. Our
simulations indicate that it is most likely to be satisfied when the co-
efficients of relative risk aversion are small in absolute value.

One factor that might be thought to work in favor of tolerating runs
is the specification that impatient consumers “die” after period 1. If
impatient consumers had a “consumption opportunity” in period 1 but
received utility from consumption in period 2 as well, the bank would
have additional leverage because most of the resources would be held
until period 2. In an earlier version of this paper (Peck and Shell 1999),
we analyzed a model in which there are two technologies and the bank
can hold only the more liquid asset. We imposed additional restrictions
on the mechanism but continued to allow suspension schemes and
showed that equilibrium bank runs always exist in that framework.

The sophisticated contracts studied here and in Green and Lin
(2000a, 2000b) are apparently not observed in practice. One explanation
is that we ignore possible moral hazard problems faced by the bank.
See Calomiris and Kahn (1991) for an explicit analysis of moral hazard
and embezzlement in banking. Also, in our model, the choice of when
to arrive replaces the requirement to report one’s type. If we introduced
an indivisibility in period 1 consumption opportunities, as in Peck and

14 For utility functions satisfying we require or or elsev(0) p ��, f(N � 1) 1 0 f(N) 1 0,
the st consumer could be given zero period 1 consumption, which would not matterN � 1
in the no-run equilibrium. No patient consumer would join a run and face a positive
probability of infinite punishment.
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Shell (1999), then the equilibrium contracts would indeed be fairly
simple. Further research is needed on this issue, but the present paper
indicates that the possibility of run equilibrium does not melt away when
more complicated contracts can be introduced.

Appendix A

Robustness to Many Consumers and Correlated Types

To show that a run equilibrium at the optimal mechanism extends beyond two
consumers and i.i.d. types, here we construct another example with many con-
sumers and correlated types. In particular, we consider an example with three
possible realizations of a.

Example 2.

1N p 300, y p 5, R p 1.05, f(100) p ,
3

1 1 2 1f(200) p , f(300) p , f (100) p , f (200) p ,p p3 3 3 3

�1 �1f (300) p 0, u(x) p �100x , v(x) p �x .p

Not surprisingly, the “optimal contract” provides the same period 1 con-
sumption for each of the first 100 consumers, each of the second 100 consumers,
and each of the third 100 consumers. Thus let for let1 1,1c (z) { c z p 1, … , 100,

for and let for The1 1,2 1 1,3c (z) { c z p 101, … , 200, c (z) { c z p 201, … , 300.
necessary first-order conditions, (7) and (8), can be solved for and1,1 1,2c c ,
yielding

1,1 1,2c p 5.05955, c p 5.29658, l p 3,899.3. (A1)

From (A1), we see that the incentive compatibility constraint is binding. The
entire mechanism is determined from (A1). For the equilibrium in which the
patient consumers wait, consumptions are15

1,1 1,2 1,3c p 5.05955, c p 5.29658, c p 4.64387,
2 2c (100) p 5.21873, c (200) p 4.87606.

At the optimal contract, patient consumers are indifferent between choosing
period 1 and choosing period 2 when all other patient consumers choose period
2. However, when all other patient consumers choose period 1, it turns out that
the remaining patient consumer strictly prefers to choose period 1. In other
words, this mechanism supports a run equilibrium to the postdeposit game.

15 It turns out that the incentive compatibility constraint is not quasi-convex for this
problem. However, we can verify that (A1) determines the optimal mechanism. First, we
analytically solve the incentive compatibility constraint for as a function of Next,1,2 1,1c c .
substitute into the expression for W to get welfare as a function of only. This function1,1c
is concave and is maximized at Finally, contradict the supposition that1,1c p 5.05955.
there can be a solution in which incentive compatibility does not bind.
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Appendix B

Direct Revelation Mechanisms

Here we adapt the postdeposit game to allow the planner to choose direct
revelation mechanisms. As in Green and Lin (2000a, 2000b), consumers arrive
at the bank in period 1 and report whether they are impatient or patient. The
sequential service constraint requires period 1 consumption to be independent
of the reports of those arriving later in the queue. However, this sequential
service constraint is different from that assumed earlier. For example, now some-
one first in the queue and reporting “impatient” can receive a different level
of period 1 consumption from someone second in the queue and reporting
“impatient” after the first person reports “patient.” The model defined in Section
II cannot make this distinction because someone wishing to report “patient”
must do this in period 2. The queue in period 1 consisted only of those wishing
to receive consumption in period 1.

The following example is the same as that of Section III, with slightly different
parameters. There are two consumers, each consumer is impatient withN p 2;
probability p and patient with probability Types are uncorrelated. A mech-1 � p.
anism specifies period 1 consumption as a function of the history of reported
types and period 2 consumption as a function of a consumer’s position in the
period 1 queue and the sequence of reported types. This specification builds
in the appropriate sequential service constraint. The mechanism that maximizes
welfare subject to resource and incentive compatibility constraints must satisfy
the following conditions. Consumers who report “impatient” receive no con-
sumption in period 2. Consumers who report “patient” receive no consumption
in period 1, and if both consumers report “patient,” they each receive the same
consumption, yR, in period 2. Thus we can characterize the optimal mechanism
by the period 1 consumption when the consumer first in the queue reports
“impatient,” denoted by c, and the period 1 consumption when the second
consumer in the queue reports “impatient” after the first consumer reports
“patient,” denoted by Thus nonzero consumptions are given byĉ.

1c (I ) p c,
1 ˆc (P, I ) p c,
1c (I, I ) p 2y � c,

2c (I, P) p (2y � c)R,
2 ˆc (P, I ) p (2y � c)R,
2c (P, P) p yR.

The expression for welfare simplifies to

2W p p [u(c) � u(2y � c)] � p(1 � p)[u(c) � v((2y � c)R)]
2ˆ ˆ� p(1 � p)[u(c) � v((2y � c)R)] � 2(1 � p) v(yR). (B1)
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The incentive compatibility constraint simplifies to

ˆv(c) pv(2y � c) � (1 � p)v(c) 1
ˆ� ≤ [pv((2y � c)R) � (1 � p)v(yR)]

2 2 2

1
� [pv((2y � c)R) � (1 � p)v(yR)], (B2)

2

and the condition for a run equilibrium simplifies to

ˆv(c) v(2y � c) v((2y � c)R) v((2y � c)R)
� ≥ � . (B3)

2 2 2 2

Let the utility functions be given by

1�a 1�bAc c
u(c) p , v(c) p ,

1 � a 1 � b

and let and The planner’s problem1A p 10, a p 2, b p 2, p p , R p 1.05, y p 3.
2

is to choose c and to maximize (B1) subject to the incentive compatibilityĉ
constraint (B2). The solution is given by

ĉ p 3.20115, c p 3.09395, l p 1.94897. (B4)

Although (B2) is not necessarily quasi-convex, we can show that (B4) constitutes
a solution. We know that (B2) must hold as an equality because welfare in (B1)
is increasing in c and within the relevant ranges and because the incentiveĉ
compatibility constraint is downward sloping in space. Given that (B2) mustˆc � c
hold as an equality, we can analytically solve (B2) for as a function of c.ĉ
Substituting for in the welfare expression (B1), we transform the problem intoĉ
the unconstrained maximization of welfare, as a function of c. This problem is
concave and is maximized at c p 3.09395.

From (B4), we determine the optimal direct revelation mechanism as

1c (I ) p 3.09395,
1c (P, I ) p 3.20115,
1c (I, I ) p 2.90605,

2c (I, P) p 3.05135,
2c (P, I ) p 2.93879,
2c (P, P) p 3.15000.

In the equilibrium in which consumers report truthfully, welfare is �3.58303.
Inequality (B3) holds as well, which implies that there is a run equilibrium in
which all consumers claim to be impatient. In the run equilibrium, one con-
sumer receives period 1 consumption of 3.09395, and the other consumer re-
ceives period 1 consumption of 2.90605.

The parameters in this example are identical to the parameters in the example
of Section III, except that here we have whereas in Section III wea p b p 2,
have Having a risk aversion parameter of two is empirically plau-a p b p 1.01.
sible and allows for an analytic solution. However, when we consider a p b p

in the example of Section III, mechanism does not have a run equilibrium.∗2 m
For the example of this Appendix, the optimal mechanism has a run equilibrium
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when we allow direct revelation mechanisms, but not when a consumer’s strategy
is to choose a round. Thus the set of economies for which the “optimal” mech-
anism admits a run equilibrium does not shrink when we allow for direct rev-
elation mechanisms.16
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