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Sunspot equilibrium and lottery equilibrium are two stochastic solution con-
cepts for nonstochastic economies. We compare these concepts in a class of com-
pletely finite, (possibly) nonconvex exchange economies with perfect markets,
which requires extending the lottery model to the finite case. Every equilib-
rium allocation of our lottery model is also a sunspot equilibrium allocation.
The converse is almost always true. There are exceptions, however: For some
economies, there exist sunspot equilibrium allocations with no lottery equilibrium
counterpart.

1. INTRODUCTION

In nonconvex environments, the best allocations are often stochastic even if the
economic fundamentals are nonstochastic. When a good is indivisible, for exam-
ple, even risk-averse consumers can benefit from the ability to purchase a contract
that delivers the good with some probability, instead of having to choose between
buying it with certainty or not at all. In such a situation, it is natural to use a
stochastic equilibrium concept, even when the fundamentals of the economy are
nonstochastic. That is, it is natural to introduce uncertainty that is extrinsic (i.e.,
does not affect endowments, technologies, or preferences) and to allow agents to
trade in contracts whose payoffs depend on the outcome of this uncertainty. This
is precisely the approach taken in two well-known general equilibrium concepts:
sunspot equilibrium, as introduced in Shell (1977) and Cass and Shell (1983),
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de Barcelona, UCSD, Washington University, the NBER General Equilibrium Conference, the
Extrinsic Uncertainty Workshop at NYU, the Cornell/Penn State Macroeconomics Workshop, and
the Meetings of the Society for the Advancement of Economic Theory. Part of this work was com-
pleted while Keister was visiting the University of Texas at Austin, whose hospitality and support are
gratefully acknowledged. Please address correspondence to: Rod Garratt, Department of Economics,
University of California, Santa Barbara, CA 93106. Phone: 805-893-2849. Fax: 805-893-8830. E-mail:
garratt@econ.ucsb.edu.

351



352 GARRATT, KEISTER, AND SHELL

and lottery equilibrium, as introduced in Prescott and Townsend (1984a, 1984b).2

Since the two models bring different approaches to bear on the same problem, it
is natural to ask how their predictions compare: What is the relationship between
the set of sunspot equilibrium allocations and the set of lottery equilibrium alloca-
tions for the same fundamental economy? We address this question for exchange
economies where the number of consumers, the number of commodities, and the
randomization possibilities are all finite.

Our focus in this article is on economies with consumption nonconvexities: Some
goods are indivisible and consumers may be risk loving. This represents a minimal
departure from the standard Walrasian setting, yet allows stochastic trade to be
useful. We assume that there are complete markets, with no restrictions to partic-
ipation on those markets, that information is symmetric, and that the economic
fundamentals are nonstochastic.3 The fundamental economy is comprised of the
set of consumers, together with their endowments and preferences, a (common)
consumption set, and an extrinsic randomizing device. Both equilibrium concepts
can be applied to the same fundamental economy, but they differ in the way trade
is organized. In the sunspots model, extrinsic uncertainty is represented by a set of
states of nature, and agents trade in state-contingent claims, such a “1 automobile
to be delivered if state number 3 occurs.” Agents construct stochastic consump-
tions by purchasing different bundles to be delivered in different extrinsic states.
In contrast, agents in the lottery model trade directly in probabilities, using assets
such as “1 automobile to be delivered with probability one-third.” In this way,
agents directly purchase a probability distribution over their consumption set. No
reference to a “state of nature” is made.

Shell and Wright (1993) were the first to investigate the relationship between the
two equilibrium concepts. They show how the equilibrium employment lotteries of
Rogerson (1988) can be implemented as sunspot equilibria, indicating that there
is indeed a close connection. In addition, they show how sunspots can provide
the necessary coordination to allocate indivisible goods among a finite number
of consumers.4 Garratt (1995) shows how the lottery model can be extended to
economies with a finite number of consumers by including the coordination of
individual lotteries in the market-clearing process. He then compares the equilib-
rium allocations of the lottery model with those generated by any sunspot variable
with a finite number of states. He finds that every lottery equilibrium allocation
has a corresponding sunspot equilibrium allocation, but some sunspot equilib-
rium allocations have no lottery equilibrium counterpart. In other words, given a
lottery equilibrium allocation, one can choose the sunspot variable in such a way
that this same allocation is also part of an equilibrium of the sunspots economy.
However, given a particular sunspot variable, there may be allocations that can

2 See Prescott and Shell (2002) for a discussion of the different histories of the two concepts and a
survey of the relevant literature.

3 Hence, if the fundamental economy were convex, the equilibria of the sunspots model would
necessarily be nonstochastic. See the immunity theorem in Cass and Shell (1983, Proposition 3).

4 Prescott and Townsend (1984a, 1984b), Rogerson (1988), and others study lottery economies with
a continuum of consumers, where a law of large numbers implies that no coordination of individual
lotteries is necessary.
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be supported as a sunspot equilibrium but not as a lottery equilibrium. The crit-
ical difference here is that the sunspots model constrains consumers to choose a
stochastic allocation that can be generated by the given sunspot variable, whereas
in the lottery model consumers are free to choose any (affordable) stochastic
allocation. This ability to constrain choice sets that is inherent in the sunspots
model can lead to the existence of an equilibrium that is not present when the
choice is unconstrained.5 A recent article by Garratt et al. (2002) examines the
case where sunspot activity is represented by a continuous random variable, so
that consumers have access to the same randomization possibilities in the sunspots
model as in the lottery model. They show that in this case, the two models generate
the same set of equilibrium allocations. The result is proven in a standard general
equilibrium model with a finite number of consumers and a (possibly) nonconvex
consumption set. Kehoe et al. (2002) show that this same result holds in a moral
hazard economy with a continuum of consumers. In addition to its theoretical im-
portance, the equivalence result has practical implications, as problems that are
difficult to solve in one model may be more easily addressed in the other. For
example, Garratt and Keister (2002) show how an outstanding question regarding
when sunspot equilibria are robust to refinements in the randomizing device is
more easily solved by looking at the lottery formulation of the problem. In addi-
tion, when the consumption set has a finite number of elements, finding lottery
equilibria reduces to solving a collection of linear programming problems, which
can be computationally easier than solving the (nonlinear) sunspots model.

In this article, we take a different approach. As in most of the sunspot equi-
librium literature, we focus on the case where there is a finite number of sunspot
states. There are good reasons for studying situations where the randomization
possibilities available to consumers are constrained in some way. For example,
transactions costs may prevent consumers from trading in a continuum of mar-
kets. Even in the absence of such costs, the government may place legal restrictions
on the types of trading allowed (such as regulating risk classes in insurance) in or-
der to achieve a preferred outcome. Because we work in environments where the
first welfare theorem holds, constraining the randomization possibilities available
to consumers cannot lead to a Pareto improvement. However, it typically does
lead to a redistribution of resources, benefiting some consumers at the expense of
others. We provide examples in Section 5 where using a constrained sunspot vari-
able leads to the same equilibrium outcome as would using a continuous sunspot
variable with a different set of endowments. In these examples, then, one can
think of regulations on stochastic trade as a substitute for lump-sum taxes and
transfers.6

5 This fact is also evident in Goenka and Shell (1997), which introduces the concept of robustness of
sunspot equilibria to refinements in the randomizing device. They show that, in nonconvex economies,
not all sunspot equilibria are robust to refinements; some can be destroyed by giving consumers
additional randomization possibilities.

6 Although we consider the question of how an economy settles on a particular randomizing device
to be extremely interesting, it is outside the scope of the present article. We take the device as given
and derive the implications of the two different models of stochastic trade based on this device.
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Rather than adjusting the randomization possibilities in the sunspots model
to match those in the lottery model, we modify the lottery model so that it can
constrain consumer choice in the same way that the sunspot model does. We in-
troduce the concept of constrained lotteries, under which only certain types of
aggregate lotteries are possible and therefore only certain individual lotteries
are available to consumers. We work in a completely finite environment—both
the number of consumers and the number of possible lotteries is finite. We in-
troduce lottery-producing firms that generate individual lotteries and coordinate
them to ensure feasibility. We present this extended model in Section 2. In Sec-
tion 3, we show that the feasible allocations in our (constrained) lottery model
are the same as those in the corresponding finite-state sunspots model. This is
our first major point: The lottery model can be extended to completely finite
economies.

Our goal is to compare the sets of equilibrium allocations generated by the two
models in the finite environment. Because we have redefined the lottery model,
the results of Garratt (1995) no longer apply. In particular, the sunspot equilibrium
allocation that Garratt (1995) shows to have no lottery equilibrium counterpart
does have a counterpart in our constrained lottery model. In this sense, equating
the randomization possibilities in the two models has again brought the sets of
equilibrium allocations closer together. However, these sets are still potentially
different because of a fundamental difference in the pricing systems. The two
models define different objects to be the “basic” commodity of trade to which the
law of one price applies. The lottery model directly assigns prices to probability
distributions over the consumption set. This means that purchasing, say, a partic-
ular consumption bundle with probability one-half (and nothing otherwise) has a
posted price. In the sunspots model, prices are assigned to states of nature. Two
different states (or sets of states) with the same probability can have different
contingent-commodity price vectors. Hence there need not be a unique cost for
the lottery that delivers a particular consumption bundle with probability one-half
(and nothing otherwise). In this way, some relative valuations of commodities in
the sunspots model cannot be represented in the lottery model. However, the
sunspots model also places certain restrictions on prices that are not present in
the lottery model. To see this, suppose that there are three equally likely states of
nature and that the sunspots model assigns the same price vector to each of these
states. Then the cost of receiving a particular bundle with probability two-thirds
is twice the cost of receiving it with probability one-third, because the way a con-
sumer constructs the two-thirds probability is by purchasing the same bundle in
two states of nature. In the lottery model, however, there is no such restriction.
The posted price of the bundle with two-thirds probability can be either more or
less than twice the price of the same bundle with one-third probability. Thus, there
are also relative valuations that can be represented in the lottery model but not
in the sunspots model. These differences in price systems can potentially lead to
differences in the sets of equilibrium allocations. If an equilibrium allocation in
one model is supported only by a price system that cannot be represented in the
other model, it seems likely that this allocation will not be an equilibrium in the
other model.
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This reasoning leads us to study in Section 4 the restrictions that equilibrium
imposes on prices. For the sunspots model, we build on the results of Garratt et al.
(2002) and show that any equilibrium allocation can be supported by a price system
in which states with equal probability share the same (contingent-commodity)
price vector. This eliminates some, but not all, of the additional flexibility of prices
in the sunspots model. To see where the remaining additional flexibility comes
from, suppose that there are three states of nature, and that the first state has
probability one-half, whereas the second and third states each have probability
one-quarter. Then our result says that any equilibrium allocation can be supported
by prices in which the cost of receiving any bundle is the same in the second and
third states. However, the result does not say that the cost of receiving the bundle
in the first state is equal to the sum of the costs in the second and third states. In
other words, in the sunspots model there can still be two different costs associated
with receiving a particular bundle with probability one-half. Such a price system
simply cannot be represented in the lottery model. For the lottery model, we show
that the absence of arbitrage opportunities for lottery-producing firms requires
that prices be linear in commodities and additive in the available randomization
opportunities. This eliminates all of the additional flexibility of prices in the lottery
model; any lottery price system that can arise in equilibrium necessarily has a
representation in the sunspots model.

These pricing results combine to generate our central results comparing the sets
of equilibrium allocations, which we present in Section 5. For every lottery equi-
librium allocation, there is a corresponding sunspot equilibrium allocation. The
converse of this statement is true unless the sunspot equilibrium allocation relies
on the additional flexibility of sunspot prices, that is, unless the support prices can-
not be translated into the lottery model. For almost all finite randomizing devices,
this cannot happen and hence the two models lead to the same set of equilibrium
allocations. However, for some randomizing devices the extra generality in the
sunspot price system does matter and there can exist sunspot equilibrium allo-
cations with no lottery equilibrium counterpart. We present two such examples.
These examples show how the phenomenon described above, where consuming a
given bundle with a given probability can have different costs depending on the set
of states chosen, not only can arise in a sunspot equilibrium, but also can be crit-
ical for supporting a particular equilibrium allocation. Such an allocation cannot
be supported as an equilibrium by the more restricted price system in the lottery
model. The fact that the set of randomizing devices for which nonequivalence
can occur has Lebesgue measure zero does not, of course, imply that such cases
are unimportant in an economic sense. Hence the sets of sunspot equilibrium and
lottery equilibrium allocations are often, but not always, equivalent in the model
with a finite probability device.

2. THE TWO MODELS

We begin by describing the fundamental elements of the economy that are
common to both models of trade. We then describe each model in detail.
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2.1. The Environment. There is a finite set H of consumers, indexed (with
a slight abuse of notation) by h = 1, . . . , H. There are L indivisible consumption
goods, each of which can only be consumed in nonnegative integer amounts. There
is a finite upper bound b� on the amount of good � that may be consumed by any one
consumer. These bounds allow us, for example, to study the case of {0, 1} goods
that has received so much attention in the literature on labor-market lotteries
(Hansen, 1985; Rogerson, 1988; Shell and Wright, 1993). We also assume that there
is a single divisible good (which we label good zero), so that the consumption set is
given by

C = C × R+

where C is a finite set with K ≡ �L
�=i b� elements. We can think of the divisible

good as “money” or “income spent on divisible goods.” The literature on lottery
equilibrium often assumes that the consumption set has only a finite number of
points, like our set C, because this simplifies notation, proofs, and computations
(see Prescott and Townsend, 1984a, 2000; Garratt, 1995). However, in the case of
finite randomization possibilities this assumption would imply that consumers are
locally satiated at every consumption bundle and would create equilibria where
consumers do not spend all of their income. Such equilibria are of limited interest.7

By adding a divisible good, we eliminate these equilibria while maintaining much
of the notational convenience of the finite-set approach. Adding more divisible
goods would not change the analysis.

Each consumer has preferences represented by a Bernoulli utility function Uh :
C → R. To simplify the analysis in what follows, we assume that this function is
additively separable in the divisible good, so that utility can be written as the sum
of two functions uh and vh, with

uh : C → R and vh : R+ → R

We assume that vh is strictly concave for all h, so that consumers are risk averse
in the divisible good. Consumer h has an endowment eh ∈ R

L
+ of the indivisible

goods and an endowment e0h ∈ R+ of the divisible good.
The set of fundamentals that is common to both models is the list

(C, {Uh, eh, e0h}h∈H) plus a randomizing device, which represents the set of stochas-
tic trades that agents can make. We find it helpful to think of this device as a roulette
wheel. The wheel has on it a finite number M of slots, and the probability that
the ball will fall into slot m is given by πm. The wheel can be spun only one time,
so a single spin represents all of the randomization possibilities available in the
economy.8 As discussed above, there are practical reasons why the randomization

7 Garratt et al. (2002, Section 2.3) examine sunspots economies with finite randomization possibili-
ties and provide results that apply only to equilibria satisfying certain conditions. The conditions deal
with exactly this issue—they rule out equilibria that rely on satiation.

8 If the wheel could be spun more than one time, we could always redefine the wheel so that each
slot on the new wheel represents a sequence of realizations from the multiple spins of the old wheel.
In this sense, allowing only a single spin is without loss of generality.



SUNSPOTS AND LOTTERIES: FINITE CASE 357

possibilities available to consumers may be constrained. To keep things simple,
however, we interpret the constraints as being technological in nature. The roulette
wheel is, in our framework, the only way in which stochastic allocations can be
generated.

To further simplify the notation, we do not allow stochastic allocations of the
divisible good. This assumption is without any loss of generality, because the strict
concavity of the functions vh implies that an equilibrium allocation of either model
cannot involve randomization in the assignment of the divisible good. The sole
purpose of the divisible good is to provide consumers with a productive use for
any “left over” income. Ruling out stochastic allocations of the divisible good
actually complicates the specification of the sunspots model slightly, but it greatly
simplifies the presentation of the lottery model.

Let F denote the set of feasible pure (nonstochastic) allocations of the endow-
ments of the indivisible goods. Using a = (ah)h∈H to denote a pure allocation with
ah ∈ C for every h, we then have

F =
{

a ∈ CH :
∑
h∈H

ah ≤
∑
h∈H

eh

}
(1)

Both models generate equilibrium allocations that consist of a pure allocation
of the divisible good paired with a probability distribution over the set F. The
difference between them is the way in which stochastic trade is organized. We
now describe the two models in detail.

2.2. The Sunspots Model. In the sunspots model, each slot on the roulette
wheel is marked with a number and called a “state of nature.” Consumers then
trade in state-contingent claims on each indivisible good. Formally, the random-
izing device is now represented by a probability space (S, �, π). Here S is a finite
set with M elements and � is the set of all subsets of S. The mapping between the
roulette wheel and this probability space is straightforward; if slot m is labeled as
state s, then the probability of this state is given by π(s) ≡ πm. We also use π(A)
to denote the probability of any subset A of S.

Let X be the set of functions xh : S → C, that is, the set of allowable, stochastic
individual consumption plans for the indivisible goods. Prices for the indivisible
goods are given by a function p : S → R

L
+.9 We take the divisible good to be the

numeraire, and we use x0h to denote consumer h’s (certain) consumption of this
good. Consumer h chooses her consumption plan to solve

max
xh,x0h

∑
s∈S

π(s)uh(xh(s)) + vh(x0h)(2)

subject to
∑
s∈S

p(s) · xh(s) + x0h ≤
∑
s∈S

p(s) · eh + e0h, xh ∈ X, x0h ∈ R+

9 In constrast to the notation in Garratt et al. (2002), the prices p here are the actual contingent-
commodity prices. They are not probability-adjusted prices.
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Let XH be the set of functions x : S → R
LH such that xh ∈ X for all h. The definition

of equilibrium for the sunspots economy is as follows.

DEFINITION 1. A sunspot equilibrium consists of a price function p∗ : S → R
L
+

and an allocation (x∗, x∗
o) ∈ XH × R

H
+ such that

(i) Given p∗, (x∗
h, x∗

0h) solves the consumer’s problem (2) for each h ∈ H,
and

(ii) (x∗, x∗
0) is feasible, i.e., we have x∗(s) ∈ F for all s ∈ S and

∑
h∈H x0h ≤∑

h∈H e0h.

Condition (ii) shows how an equilibrium allocation x∗ of the indivisible goods
generates a probability distribution over the set F defined in (1). The distribution
is given by π ◦ (x∗)−1; in other words, to every allocation a ∈ F , it assigns the total
probability of the set of states s such that x∗(s) = a holds. This distribution, together
with the allocation of the divisible good, summarizes an equilibrium allocation of
the sunspots model.

This specification of the sunspots model is fairly standard. We now turn our
attention to the lottery model, which we must modify to allow for constraints on
the randomization possibilities.

2.3. The Lottery Model. Following Prescott and Townsend (1984a, 1984b), we
treat each consumption bundle in C as a separate commodity. This means there are
K commodities (plus the divisible good). A quantity of commodity k corresponds
to the probability of receiving bundle ck. In this way, consumers in the lottery
model directly choose probability distributions over C, which are called individ-
ual lotteries. However, in the constrained lottery model consumers are not able to
purchase an arbitrary probability distribution over C. Rather, they are only able
to choose lotteries that can be generated by the prespecified randomizing device,
which we again interpret as a roulette wheel. Unlike in the sunspots model, in the
lottery model consumers are not able to specify how their possible consumption
bundles are arranged on the wheel. As an example, suppose the wheel has two
equally likely slots (black and red) and that a consumer purchases a lottery that
delivers a particular bundle with probability one-half. The consumer is not able
to specify whether she will receive that bundle when the black slot is realized or
when the red slot is realized. If she could, she would be buying state-contingent
commodities and we would be back in the sunspots model. Instead, the task of
arranging the demanded lotteries on the wheel so that they meet feasibility re-
quirements is left to the wheel’s operator; we discuss this process in detail below.

2.3.1. Constrained lotteries and consumer choice. An individual lottery is a
probability distribution δh over C. Because C is a finite set, this distribution is a
vector (δh(c1), . . . , δh(cK)) ∈ R

K
+ whose elements sum to unity, where δh(ck) is the

probability assigned to the consumption bundle ck. Let 
(C) denote the set of all
probability distributions over the bundles of indivisible goods; this is equivalent
to the (K − 1)-dimensional unit simplex in R

K. Only a few of these lotteries can
actually be generated by the roulette wheel. Consider a function gh that assigns
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an element of C to each of the M slots on the wheel. Abusing notation slightly, let
M also represent the set of slots on the wheel, so that we have gh : M → C. Let G
be the set of all such functions. (Note that since M and C are finite sets, G is also a
finite set.) Then the set of probability distributions over C that can be generated
by a particular randomizing device is given by

�(C) =
{

δh ∈ 
(C) : ∃gh ∈ G such that δh(ck) =
∑

m:gh(m)=ck

πm holds for all k

}

In other words, an individual lottery δh is in the set �(C) if there is some way
of arranging consumption bundles on the roulette wheel so that the probability
distribution over C generated by a spin of the wheel is exactly δh. As an example,
suppose that K = 3 and that there are three equally likely slots on the wheel.
Then 
(C) is the triangular simplex shown in Figure 1. The set �(C) contains
those lotteries in which the probability placed on each consumption bundle is a
multiple of one-third; these lotteries are represented by the 10 dots in the figure. A
consumer must choose one of these 10 lotteries; that is, consumers are constrained

0

1

1

1

δ (c3 )

δ (c1 )

δ (c2 )

FIGURE 1

THE SET OF POSSIBLE INDIVIDUAL LOTTERIES
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to choose a lottery that is “available in the market.” It is important to recognize
that this is exactly the set of probability distributions over C that a consumer
in the sunspots model can construct using state-contingent commodities when
there are three equally likely states. This is what we mean when we say that our
(constrained) lottery model places the same restrictions on consumer choice that
the finite-state sunspots model does.

An individual consumption plan is a pair (δh, c0h) specifying a lottery over C
and a (certain) amount of the divisible good. We again take the divisible good
to be the numeraire. A general formulation of lottery prices is then a function
φ : �(C) → R+, that is, a function that assigns a price (in units of the divisible
good) to each possible lottery over the indivisible goods. Using this formulation,
we can write the consumer’s lottery-choice problem as

max
δh,c0h

K∑
k=1

δh(ck)uh(ck) + vh (c0h)(3)

subject to φ(δh) + c0h ≤ φ(eh) + e0h, δh ∈ �(C), c0h ∈ R+

where eh here represents the degenerate lottery that gives consumer h’s endow-
ment of the indivisible goods with probability one.

2.3.2. Lottery-producing firms. Lotteries are produced by a representative,
competitive firm that has access to the randomization technology represented by
the roulette wheel. The firm operates by buying and selling “lottery tickets,” where
each ticket entitles the holder to a particular lottery. Let j index the lotteries that
the firm can produce, so that δ j is a typical element of �(C). Let y(δ j ) denote the
firm’s sales of tickets promising the distribution δ j . This number may be positive
or negative (with negative sales indicating purchases), but must be an integer.
Thus, a production plan for the firm is a function y : �(C) → Z, where Z is the set
of integers. The firm must, of course, choose a feasible production plan. That is, it
must be able to arrange the lotteries that it buys and sells on the roulette wheel in
such a way that, for all realizations, it gives away no more resources than it takes
in. Let n index the individual tickets of lottery j bought or sold by the firm, so
that we have n = 1, . . . , |y(δ j )|. Each ticket is therefore identified by a pair ( j , n),
indicating the type of lottery it delivers (j) and the “serial number” of the ticket
within that type (n). We must keep track of identical lottery tickets individually
here, because they may need to be generated by different slots on the roulette
wheel. A function g j,n that assigns the distribution promised by lottery ticket ( j ,
n) to spaces on the lottery wheel has the form g j,n : M → C,10 with

δ j (ck) =
∑

m:g j,n(m)=ck

πm for all k(4)

10 This notation is slightly different from our earlier use of subscripts to the function g. Instead
of indexing by the purchaser of the lottery ticket, we are now indexing by type of lottery and serial
number of the ticket. Of course, this is not important; it only serves to simplify the notation. Regardless
of how we index the lotteries, g will always represent a function that assigns consumption bundles to
slots on the wheel.
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For all types of lotteries j, define

Ij =




−1 if y(δ j ) < 0

0 if y(δ j ) = 0

1 if y(δ j ) > 0

Then Ij is an indicator for whether the firm is buying or selling lotteries of type
j. Feasibility requires that the functions g j,n used to create the individual lottery
tickets satisfy ∑

j,n

Ij g j,n(m) ≤ 0 for all m(5)

Note that this is a vector inequality: for each slot m, the net amount of each good
that the firm must deliver when m is realized must be nonpositive. Conditions
(4) and (5) together are equivalent to saying that each of the individual lottery
tickets must be a marginal distribution of some common joint lottery over the set
of feasible (pure) allocations F.11 The production set of the firm is

Y = {
y : �(C) → Z : ∃{g j,n} j,n

such that (4) holds for each ( j, n) and (5) is satisfied
}

The firm’s problem is given by

max
y∈Y

∑
δ j ∈�(C)

φ(δ j )y(δ j )(6)

Before proceeding, it may be helpful to look at a simple example that illustrates
how our firms differ from those used in the previous literature (see especially
Rogerson, 1988).

EXAMPLE. C = {0, 1}. There is a single indivisible good that can only be con-
sumed in either one unit or not at all. Suppose that all consumers are identical
and that prices are such that everyone demands the lottery that gives one unit of
the good with probability two-thirds and nothing with probability one-third. First
consider the case where there is a continuum of consumers and randomization
is unconstrained. Then the firm buys two-thirds of a unit of the good per con-
sumer, and sells the demanded lottery. Each consumer comes to the firm and a
weighted coin is tossed to see if the consumer receives the good or not. Since the
coin tosses are independent across consumers,12 two-thirds of the consumers will

11 The idea of using aggregate or joint lotteries to ensure coordination when there is a finite number
of consumers was introduced in Garratt (1995), where coordination is provided by the Walrasian
auctioneer as a part of the market-clearing process.

12 This statement ignores problems associated with integrating over a continuum of i.i.d. random
variables.
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receive the good and hence this plan is feasible. This is the “traditional” approach
to lottery-producing firms.

Next, let us look at how the firm in our model operates. Suppose that there are
three consumers and the roulette wheel has three equally likely slots. The firm
faces the above demand conditions—all consumers want to receive the good with
probability two-thirds. If the firm buys two units of the indivisible good (or, more
precisely, two units of the degenerate lottery that delivers one unit of the good
with probability 1), it can offer three units of the demanded lottery. Consider the
joint lottery

Roulette wheel slot: red black green

ticket-holder 1: 1 1 0
Payoff to ticket-holder 2: 1 0 1

ticket-holder 3: 0 1 1

Looking at the columns shows that, regardless of which slot is realized, the firm
pays out two units of the good (exactly equal to the resources it purchased). Look-
ing at the rows shows that each ticket holder receives the good with probability
two-thirds, as desired.

Two comments are in order here. First, the plan of the finite-case firm only
works if the number of tickets it sells is a multiple of three. There is no way
it can sell four of these lotteries, for example, because there is no joint lottery
that would generate four such marginal distributions (see Shubik, 1971, on this
phenomenon). Outside of this restriction, the finite-case firm behaves very much
like the continuous-case one: It purchases two-thirds of a unit of the good per
customer and delivers the good with probability two-thirds to each customer.
Second, suppose that the roulette wheel has only two slots, with probabilities one-
third and two-thirds. Now the plan of the finite-case firm is infeasible, since there
is no longer a joint lottery that gives the same marginal distribution to every ticket
holder. That such seemingly small changes in the randomizing device can have
important effects is a recurrent theme in the finite case.

2.3.3. Equilibrium. Let δ denote the vector of individual lotteries, δ = (δh)h∈H.
The definition of equilibrium in our constrained lottery economy is the following.

DEFINITION 2. A lottery equilibrium consists of a price function φ∗ : �(C) →
R+ and an allocation (δ∗, c∗

0, y∗) such that

(i′) Given φ∗, (δ∗
h, c∗

0h) solves the consumer’s lottery problem (3) for each
h ∈ H,

(ii′) Given φ∗, y∗ solves the firm’s problem (6), and
(iii′) We have both

y∗(δ j ) =
∑
h∈H

(
I(δ∗

h=δ j ) − I(eh=δ j )

)
for every δ j ∈ � (C)
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and ∑
h∈H

c∗
0h ≤

∑
h∈H

e0h

Condition (iii′) is the market-clearing constraint. It requires that the number of
units of each lottery that the firm produces be equal to the net demand for the
lottery by households (here I is the standard indicator function), and that the
market for the divisible good clears.

Recall that a sunspot equilibrium allocation generates a probability distribution
over the set F of (pure) feasible allocations of the indivisible goods. The same is
true in the lottery model. Let gh denote the arrangement function for the lottery
δ∗

h. Define g to be the vector-valued function comprised of the functions gh, so
that we have g : M → CH . The feasibility condition (5) guarantees that for every
realization of the wheel, the assignment of resources is feasible. Therefore we have
g(m) ∈ F for all m. Then π ◦ g−1 is the probability distribution over F (or, the joint
lottery) associated with the lottery equilibrium allocation. This relates the market-
clearing conditions here to those in Garratt (1995) and Garratt et al. (2002). In
those articles, market-clearing is stated directly in terms of the joint lottery. This
is because the joint lottery is arranged by the auctioneer (and hence is naturally
considered part of the market-clearing process). Here the joint lottery is arranged
by the firm and hence is determined by the firm’s equilibrium production plan.

3. COMPARING THE MODELS

Although the two models are stated in very different terms, the literature (be-
ginning with Shell and Wright, 1993) has shown that they have much in common.
Our introduction of constrained lotteries has, for the finite case, brought them
closer still. In this section, we compare the sets of feasible allocations and of pos-
sible prices in the two models. We show that the sets of feasible allocations are
identical. In this sense, our definition of constrained lotteries places the “right”
restrictions on stochastic allocations in the lottery model. The price systems, on
the other hand, are fundamentally different.

3.1. Corresponding Allocations. Because an individual consumption plan is a
function in the sunspots model and a probability distribution in the lottery model,
we need to be precise about how we compare these objects. At the individual
level, a sunspot consumption plan (xh, x0h) induces a lottery consumption plan
(δh, c0h) through the equations

δh (ck) = π ◦ x−1
h (ck) for all k(7)

c0h = x0h(8)

In other words, the probability assigned by the individual lottery δh to the bundle
of indivisible goods ck is equal to the probability assigned by π to the set of states
in which xh delivers ck. Note that xh ∈ X holds if and only if δh ∈ � (C) holds,
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that is, the lottery δh defined in (7) is individually feasible in the lottery model if
and only if the plan xh generating it is individually feasible in the sunspots model.
At the aggregate level, a sunspot allocation (x, x0) induces a lottery allocation
(δ, c0, y) in two steps. First, the individual sunspot consumption plans induce the
individual lotteries through (7). The production plan y is then given by

y(δ j ) =
∑
h∈H

(
I(δh=δ j ) − I(eh=δ j )

)
(9)

for all δ j ∈ �(C). In other words, y is the unique production plan that makes
the consumption allocation feasible. We now show that, through this relationship,
feasible sunspot allocations always correspond to feasible lottery allocations and
vice versa.

PROPOSITION 1. A sunspot allocation (x, x0) is feasible if and only if the corre-
sponding lottery allocation (δ, c0, y) given by (7), (8), and (9) is feasible.

The proofs of all propositions are contained in the Appendix. The intuition for
this result is fairly straightforward. If (x, x0) is a feasible sunspots allocation, then
by definition it is possible to arrange the individual consumption plans xh on the
wheel in such a way that a feasible (pure) allocation is assigned to every slot.
This same arrangement pattern can then be used in the lottery model to construct
assignment functions g j,n that show how the production plan y defined in (9) is
contained in the production set Y. Conversely, if (δ, c0, y) is a feasible lottery
allocation, one can use the functions g j,n to show that the sunspot consumption
plans xh are such that x(s) ∈ F holds for every s.13 It should come as no surprise
that the sets of feasible allocations are the same in the two models. Our goal in
defining the concept of constrained lotteries was precisely to allow only those
allocations that are feasible in the finite-state sunspots model.

3.2. Corresponding Prices. Although both models generate the same set of
feasible allocations, there is an important difference in the way they assign prices.
Essentially, the two models define different objects to be the basic commodity of
trade to which the law of one price applies. This can been seen in the context of
a simple example. Suppose the roulette wheel has two equally likely slots. Pick
an arbitrary consumption bundle ck and ask: What is the price of receiving that
bundle with probability one-half and nothing otherwise? In the lottery model,
there is a unique answer: φ(δ j ), where δ j represents the specified lottery. In the
sunspots model, however, the answer is either [p(1) · ck] or [p(2) · ck], depending
on the state in which the bundle is purchased. Hence the sunspots model has the
ability to assign different prices to something that the lottery model considers a

13 There is an additional complication in this direction: Different sunspot allocations may corre-
spond to the same lottery allocation. Therefore matching the functions gh with the functions xh may
first require “relabeling” the states of nature in such a way that the probability of receiving each con-
sumption bundle is preserved. See Garratt et al. (2002) for an extensive discussion of this many-to-one
relationship.
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single commodity. Now ask: What is the relationship between the cost of buying a
bundle with probability one-half (and nothing otherwise) and the cost of buying
it with probability one? In the sunspots model, there is a unique answer: The
cost of buying ck with probability one is given by [p(1) + p(2)] · ck. In the lottery
model, however, no such relationship need hold between φ (δ j ) and the cost of the
(degenerate) lottery giving ck with probability one. In this way, the lottery model
has more flexibility in the assignment of prices across different probabilities.

If we have a sunspot equilibrium allocation, we know that the corresponding
lottery allocation is feasible. However, if the support prices in the sunspots model
cannot be translated into a price function in the lottery model, it seems likely that
the allocation will not be part of an equilibrium of the lottery model. (We show
that this is indeed the case in Section 5.) Therefore, the critical issue is under what
conditions the prices in one model can be translated into corresponding prices in
the other model. Some additional notation is needed. Let � denote the image of
�(C) in the interval [0, 1]. Then � is the set of probabilities that can be assigned to
consumption bundles in a lottery generated by the roulette wheel. For example,
if there are three equally likely slots, then we have � = {0, 1/3, 2/3, 1}. The same
is true if there are two slots with probabilities one-third and two-thirds; different
randomizing devices can lead to the same set �. Note that we have the relationship

� =
{

θ ∈ [0, 1] : θ =
∑
s∈A

π(s) for some A⊆ S

}

In other words, a consumption bundle in the lottery model can be purchased with
probability θ if and only if it can be purchased in the sunspots model in a set of
states whose total probability is θ .

We now introduce a condition that is central to determining the relationship
between the equilibria of the two models. Suppose a sunspot price function p has
the following property: for any two disjoint subsets A and B of S, we have∑

s∈A

π(s) =
∑
s∈B

π(s) ⇒
∑
s∈A

p(s) =
∑
s∈B

p(s)(10)

In other words, suppose that whenever there are different ways of combining states
together to get the same probability, the total cost of purchasing any consumption
bundle in either of the two sets of states is the same. When this is true, the sunspots
model assigns a unique price vector to each level of probability in �, and therefore
the sunspot prices can be transformed into lottery prices. Let P̂ be the set of
functions p : S → R

L
+ satisfying condition (10).

DEFINITION 4. Given a sunspot price function p ∈ P̂, the corresponding lottery
price function φ : �(C) → R

L
+ is defined in two steps. First, for all θ ∈ �, define

q : � → R
L
+ by

q(θ) =
∑
s∈A

p(s)(11)
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for any set A ⊆ S satisfying
∑

s∈Aπ(s) = θ . Then the price function φ is given
by

φ(δ j ) =
K∑

k=1

q
(
δ j (ck)

) · ck(12)

The function q assigns a price vector to each probability in �, with q(0) naturally
equal to the zero vector. Any consumption bundles that are purchased with prob-
ability θ are then priced according to q(θ). Only when sunspot prices satisfy (10)
will the function q, and hence the lottery prices, be well defined. If the sunspot
price function does not satisfy (10), we say that it has no corresponding lottery
prices. For a given lottery price function φ, there may or may not exist functions p
and q that generate φ through (11) and (12). For example, lottery prices must be
linear in commodities for (12) to hold. In addition, certain restrictions regarding
the assignment of prices across different probabilities must be satisfied. If, for a
given lottery price function φ, there does not exist a pair (p, q) satisfying (11) and
(12), we say that φ has no corresponding sunspot prices.

To see what restrictions must be placed on prices in order for them to translate
from one model to the other, consider the case of three equally likely slots on the
wheel. In order for a sunspot price function p to have corresponding lottery prices
in this case, it must assign a unique price to receiving any consumption bundle
with probability two-thirds. This implies that we must have

p (1) + p (2) = p (1) + p (3) = p (2) + p (3)

which in turn implies that p(1) = p(2) = p(3) must hold. In this case, sunspot
prices would need to be constant across states in order to have corresponding
lottery prices. Conversely, any lottery price function φ must be linear in quantities
and have a price vector q that satisfies

q
(

2
3

)
= 2q

(
1
3

)
and q(1) = 3q

(
1
3

)

in order to correspond to some sunspot prices. Now suppose that we look at
another randomizing device with only two slots on the wheel, with probabilities
one-third and two-thirds. In this case there is no restriction on the sunspot price
function p. The only restriction on the lottery price function is

q(1) = q
(

1
3

)
+ q

(
2
3

)

Hence the strength of the restrictions required for prices to translate from one
model to the other depend on the details of the randomizing device. Many restric-
tions are needed when slots are equally likely, while fewer are required when each
slot has a distinct probability.
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4. EQUILIBRIUM PRICES

In this section we show that, in both models, equilibrium places important re-
strictions on the form on the price function. These restrictions have the effect
of bringing the sets of possible price functions closer together. For the sunspots
model, we show that every equilibrium allocation can be supported by prices in
which equal-probability states share the same contingent-claims price vector. This
removes some, but not all, of the extra pricing flexibility in the sunspots model.
In the lottery model, we show that if a price function does not generate arbitrage
opportunities for the lottery-producing firm, then it has a corresponding sunspots
price function. Hence, equilibrium considerations eliminate all of the extra pricing
flexibility in the lottery model.

4.1. Sunspot Equilibrium Prices. We first prove a result for the sunspots
model. Garratt et al. (2002) show that with a finite number of equally likely states,
any equilibrium allocation can be supported by prices that are constant across
states. We extend this result to the case where only some states are equally likely.
We show that any equilibrium allocation can be supported by prices in which
π(s) = π(s ′) implies p(s) = p(s ′) for any states s and s ′. In other words, equal
probability states share the same vector of contingent-claims prices. As shown in
the previous section, such a result is critical for supporting the corresponding allo-
cation as an equilibrium of the lottery model, since the lottery model necessarily
assigns a single price to receiving a bundle with probability θ = π(s).

We begin by defining sets of individual consumption plans that are in some sense
equivalent. Suppose that we have a subset A⊆ S of states, each of which has the
same probability. Let NA be the number of states in A, and suppose (without any
loss of generality) that these states are consecutively numbered, beginning with
state 1.

DEFINITION 5. For any xh ∈ X and any set A of equi-probable states, the A-shift
class of xh, denoted TA(xh), is the set of plans xt

h such that

xt
h =

{
xh(s + t) s ∈ A

for
xh(s) s /∈ A

}

holds for some t ∈ {0, 1, . . . , NA}, where the addition is modulo NA.

The idea here is simply to “shift” the consumption bundles across the equally
probable states of nature. If these states were not consecutively numbered, the
idea would be exactly the same, only the notation would be more complicated.

The A-shift class is a set of consumption plans among which a consumer with
von Neumann–Morgenstern preferences would clearly be indifferent.14 We next
show that this fact has important implications for the form of equilibrium prices.

14 Our results would actually apply to a broader class of preferences, including those defined by
Balasko (1983).
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For any price vector p and any equi-probable set A, define another price vector
p̄A by

p̄A =
{

1
NA

∑
s∈A p(s) s ∈ A

for
p(s) s /∈ A

}

The price vector p̄A replaces prices of states in A with the average price across
those states. We show that if p∗ supports some allocation (x∗, x∗

0) as a sunspot
equilibrium, then that same allocation is also supported as an equilibrium by p̄∗

A.

PROPOSITION 2. Suppose (p∗, x∗, x∗
0) is a sunspot equilibrium. Then for any set

of equi-probable states A, ( p̄∗
A, x∗, x∗

0 ) is also a sunspot equilibrium.

The proof of this proposition involves showing that when prices p∗ are replaced
with p̄∗

A, the optimal choice of each consumer stays the same. One way of interpret-
ing the result is as saying that, in equilibrium, no state can trade at a meaningful
discount relative to another state with the same probability. Two equally likely
states can have different contingent-claims price vectors, but it must be the case
that if we average out these differences by switching to prices p̄∗

A, no consumer
wishes to change her consumption plan.

This result can be used to give sufficient conditions on the randomizing device
to guarantee that sunspot prices have corresponding lottery prices. As an example,
suppose that there are three states of nature, with π(1) = π(2) = 1/6 and π(3) =
2/3. Then Proposition 2 says that any equilibrium allocation can be supported by
a price function that assigns a unique cost to receiving a particular bundle with
probability one-sixth. The other possible probabilities (one-third, two-thirds, five-
sixths, and one) then have unique costs as well. Therefore condition (10) is satisfied,
and the corresponding lottery prices are given by (11) and (12). In addition, when
there are multiple sets of equi-probable states, the proposition applies to each of
them. Suppose there are four states with probabilities π(1) = π(2) = 1/10 and
π(3) = π(4) = 2/5. Then Proposition 2 says that any equilibrium allocation has
support prices with p(1) = p(2) and p(3) = p(4). From this it follows that each of
the other possible probabilities in the set � has a unique cost, and therefore (10)
is again satisfied.

Notice, however, that the conclusion in Proposition 2 applies only to equally
likely states, not to sets of states that add to the same total probability. Suppose,
for example, that there are three states with probabilities π(1) = 1/2 and π(2) =
π(3) = 1/4. Then the proposition tells us that any equilibrium allocation has
support prices with p(2) equal to p(3), but it does not say anything about the
relationship between p(1) and the sum of p(2) and p(3). This distinction will be
critical in our examples in the next section of sunspot equilibrium allocations with
no lottery equilibrium counterpart.

4.2. No-Arbitrage Lottery Prices. In the lottery model, arbitrage arguments
based on the constant-returns-to-scale nature of the firm’s production technology
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can be used to place restrictions on the set of prices that could appear in equi-
librium. Garratt (1995) demonstrates that in a model where the auctioneer coor-
dinates individual lotteries, the absence of arbitrage requires that lottery prices
be linear in the underlying goods. This is also true under our specification of the
lottery-producing firm.

PROPOSITION 3. If there exists a solution to the firm’s problem (6), then there
exists a function q : � → R

L
+ such that (12) holds for every δ j ∈ �(C).

The intuition for this result is conveyed in a simple example. Suppose there are
two indivisible goods, and let θ denote the probability associated with any one slot
on the wheel. One possible lottery delivers two units of each good with probability
θ (and nothing otherwise). The firm can produce this lottery using two units each
of the lottery that delivers one unit of the first good with probability θ and the
lottery that delivers one unit of the second good with probability θ . The firm can
also reverse this production plan, using the single lottery as an input and the four
smaller lotteries as outputs. Hence the price of the former must exactly equal
the sum of the prices of the latter in order for the firm not to have an arbitrage
opportunity. This implies that for each θ ∈ �, there exists a vector q(θ) such that
the price of receiving bundle ck with probability θ is given by the inner product
q(θ) · ck. A similar argument can be used to show that the cost of a lottery that
delivers ck with probability θ and ck′ with probability θ ′ must be equal to the sum
of q(θ) · ck and q(θ) · ck′ .

The previous literature has assumed that lottery prices are also linear in prob-
abilities, that is, the price of probability θ on any bundle ck is given by θψ · ck

for some ψ ∈ R
�
+. This is a much stronger restriction on prices than that given

in Proposition 3. Neither prices in the sunspots model nor those in the lottery
model need be linear in probabilities. However, as we demonstrate next, lottery
prices must satisfy some restrictions across probabilities in order to prevent the
firm from having arbitrage opportunities.

DEFINITION 6. For a given randomizing device, a lottery price function q : � →
R

L
+ is additive if for any set A⊆ M of slots on the wheel, we have

q

(∑
m∈A

πm

)
=

∑
m∈A

q(πm)

This definition does not imply that prices are linear in probabilities. Suppose
there is a single commodity and that there are two slots on the wheel, with prob-
abilities one-third and two-thirds. Then the following price function is additive:

q
(

1
3

)
= 1

4
, q

(
2
3

)
= 3

4
, q (1) = 1

In this example, q(1) gives the price of receiving one unit of the good with certainty,
which can be generated by adding together the probabilities of the two individual
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slots. Additivity therefore requires that we have

q(1) = q
(

1
3

)
+ q

(
2
3

)

but does not impose any particular relationship between q(1/3) and q(2/3). Our
next result is that no-arbitrage prices must be additive.

PROPOSITION 4. If there exists a solution to the firm’s problem (6), then lottery
prices are additive.

The intuition for this result is very similar to that for Proposition 3. Let θ and θ ′

denote the probabilities of any two slots on the wheel. One possible production
plan is the following: Buy some bundle ck with probability θ , also buy that same
bundle with probability θ ′, and sell ck with probability (θ + θ ′). If lottery prices
are not additive this plan will generate nonzero profits, and hence the firm could
generate unbounded profits by replicating either this plan or the negative of it.

For the case where all slots on the wheel are equally likely, every probability in
� is a multiple of 1/M. Therefore, for any θ ∈ �, additivity implies that we have

q(θ) = q
(

α

M

)
= αq

(
1
M

)

for some integer α. In other words, in this case prices must be linear in probabilities.
We state this as a corollary.

COROLLARY 1. Suppose the randomizing device has M equally likely slots. Then
if the firm’s problem (6) has a solution, lottery prices must be linear in probabilities,
i.e., the price of lottery δ j must be given by

q(δ j ) = q(1) ·
K∑

k=1

δ j (ck)ck

The most important result in this section is that every no-arbitrage lottery price
function has a corresponding sunspot price function. Although in principle there
are many lottery prices that cannot be represented in the sunspots model, none of
them can ever support an equilibrium allocation in the lottery model. To see why
this is true, recall that a lottery price function has a corresponding sunspot price
function if there exist functions p and q such that (11) and (12) hold. The q function
satisfying (12) is given by Proposition 3, which tells us that no-arbitrage lottery
prices must be linear in commodities. The function p is constructed in the following
way. For every state s in the sunspots model, set p(s) = q(θ), where θ = π(s). This
rule completely defines the sunspot price function p. What remains is to show that
p does in fact generate q through (11), that is, that for every θ ∈ �, we have

q(θ) =
∑
s∈A

p(s)
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for every set A⊆ S satisfying
∑

s∈Aπ(s) = θ . This relationship is ensured by the
fact that q is additive with respect to the given randomizing device. Each p(s) has
already been set equal to q(πm) for some slot m. Therefore we have∑

s∈A

p(s) =
∑
m∈A

q (πm)

which, by additivity, is equal to q(θ), where θ = ∑
m∈Aπm. We state this important

result as our second corollary.

COROLLARY 2. Every no-arbitrage lottery price function has a corresponding
sunspot price function.

5. COMPARING EQUILIBRIUM ALLOCATIONS

We are now in a position to address our main question: Under what conditions
do the two models generate the same sets of equilibrium allocations? We begin
by showing that this occurs whenever the prices supporting an allocation as an
equilibrium in one model can be translated into the other model. We then provide
two examples to illustrate the types of situations in which equivalence can fail.

5.1. Conditions for Equivalence. Corollary 2 states that any no-arbitrage lot-
tery price function has a corresponding sunspot price function. We begin by re-
stricting sunspot prices to be such that they have corresponding lottery prices. We
show that, under this restriction, the two models generate the same set of equilib-
rium allocations. Any difference in these sets must therefore result from the extra
flexibility of the sunspot pricing function. Using Proposition 3, we can rewrite the
consumer’s lottery-choice problem (3) as

max
δh,c0h

K∑
k=1

δh (ck) uh(ck) + vh (c0h)(13)

subject to
K∑

k=1

q(δh(ck)) · ck + c0h ≤ q(1) · eh + e0h, δh ∈ �(C), c0h ∈ R+

We now present the (restricted) equivalence result. Let (x∗, x∗
0) be a sunspot

allocation and let (δ∗, c∗
0, y∗) be the corresponding lottery allocation generated by

Equations (7)–(9). Let Q denote the set of all functions q : � → R
L
+, and recall that

P̂ is the set of sunspot price functions satisfying (10). We then have the following.

PROPOSITION 5. There exists a p∗ ∈ P̂ such that (p∗, x∗, x∗
0) is a sunspot equi-

librium if and only if there exists a q∗ ∈ Q such that (q∗, δ∗, c∗
0, y∗) is a lottery

equilibrium.

This result establishes that when the price systems in the two models are compa-
rable, the equilibrium allocations are identical and the differences in the trading
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stories do not matter. Combined with Corollary 2, it implies that every lottery
equilibrium allocation has a corresponding sunspot equilibrium allocation. This
provides a partial answer to our main question.

COROLLARY 3. Every lottery equilibrium allocation has a corresponding sunspot
equilibrium allocation.

Under what conditions do sunspot equilibrium prices necessarily have corre-
sponding lottery prices, so that full equivalence between the sets of equilibrium
allocations obtains? Garratt et al. (2002) show that full equivalence arises when
the sunspot variable is continuous and lottery choice is unconstrained. We now
present a result that gives a sufficient condition for equivalence to hold when ran-
domization possibilities are finite. First, Proposition 2 implies that when all slots
on the wheel are equally likely, equilibrium prices in the sunspots model are linear
in probabilities (Corollary 1 states that the same is true for the lottery model).
Hence in this case the sets of equilibrium allocations coincide.

COROLLARY 4. When the randomizing device is such that all slots on the wheel
are equally likely, the set of sunspot equilibrium allocations is equivalent to the set
of lottery equilibrium allocations.

How likely is it that equivalence will fail? For many randomizing devices, con-
dition (10) holds by default for all sunspot price functions. Suppose that there do
not exist disjoint subsets A and B of S such that

∑
s∈A

π(s) =
∑
s∈B

π(s)(14)

holds. For example, when there are two states of nature (14) cannot hold if the
states are not equally likely. In such cases, (10) imposes no restriction at all on the
form of the sunspot price function. In other words, the sets P and P̂ are the same,
and therefore the sets of sunspot and lottery equilibrium allocations must be the
same. As our final proposition, we show that the set of finite randomizing devices
for which (10) actually imposes some restriction, and hence might possibly be vi-
olated, is small—it has Lebesgue measure zero. Hence the equivalence of sunspot
and lottery equilibrium allocations obtains for “almost all” finite randomizing
devices.

PROPOSITION 6. Given any fundamental economy and any number M of slots,
the set of randomizing devices for which the equivalence of the sets of sunspot and
lottery equilibrium allocations fails has Lebesgue measure zero.

To see why this proposition is true, consider the set of all randomizing devices
with M slots; this set is equivalent to the (M − 1)-dimensional unit simplex. Each
of these devices naturally generates a sunspot variable with M states of nature.
We want to ask which of these sunspot variables have the property that there exist
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nonempty, disjoint subsets A and B of S satisfying (14). The answer is that very
few of them do; for almost every vector of M probabilities, (14) does not hold for
any subsets A and B. Suppose, for example, that there are three states of nature.
Then one way of creating disjoint subsets of S is to let A be the first state and B the
second. In this case, (14) holds if π(1) = π(2) holds. This condition defines a line
segment in the two-dimensional unit simplex; hence, the set of three-state sunspot
variables for which π(1) = π(2) holds has Lebesgue measure zero. There are five
other ways of defining sets A and B, and for each of these ways (14) also holds on
a set of Lebesgue measure zero. The total set of randomizing devices for which
(14) holds for some A and B is therefore a finite union of sets of measure zero,
and hence has measure zero itself. When the wheel has more than three slots, the
argument is the same except that the number of ways of defining A and B is larger.
The details are given in the Appendix. The bottom line of this reasoning is that for
a “typical” finite randomizing device, the sets P and P̂ are equal and Proposition
5 therefore establishes full equivalence of the sets of equilibrium allocations.

Note that the argument above gives a sufficient condition for equivalence; it
does not say that whenever we have disjoint sets A and B satisfying (14) we will
necessarily have nonequivalence. Equivalence will also obtain with many other
randomizing devices. For example, when there are four states of nature, with
π(1) = π(2) = 1/10 and π(3) = π(4) = 2/5, there are several ways of creating
sets A and B such that (14) holds. Nevertheless, as we mentioned in Section 4.1,
applying Proposition 2 (twice) shows that equivalence necessarily obtains under
this device. Furthermore, a randomizing device where all slots are equally likely
satisfies (14), but Corollary 4 shows that equivalence always obtains with such
device. What Proposition 6 shows is that the set of devices for which equivalence
fails to obtain is a subset of a set of measure zero, and therefore has measure zero
itself.

This result has an obvious probabilistic interpretation. Suppose the randomiz-
ing device were chosen at random in the following way. First M is drawn from any
distribution over the set of integers greater than 1. Then a randomizing device
is drawn from the set of M-slot devices using any distribution that has a density
with respect to Lebesgue measure. With probability one the chosen randomiz-
ing device will then be such that (10) places no restriction on the form of the
sunspots price function, and therefore equivalence between the sets of sunspot
and lottery equilibrium allocations obtains. However, we offer no theory of how
the randomizing device is selected; it is certainly not clear that it should be viewed
as being randomly selected. A government regulating risk classes in insurance,
for example, might impose a device with “critical” properties in order to achieve
a desired allocation. Hence we cannot dismiss sets of Lebesgue measure zero as
being unimportant.

5.2. Examples of Nonequivalence. We now provide a pair of examples of
sunspot equilibrium allocations with no lottery equilibrium counterpart. Our ap-
proach is to construct an allocation so that the supporting price vector necessarily
violates condition (10). It is then immediate from Proposition 5 that the corre-
sponding lottery allocation cannot be part of an equilibrium of the lottery model.
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EXAMPLE 1. There are three states of nature, with

π(1) = 1
2 and π(2) = π(3) = 1

4(15)

There is a single indivisible good, which must be consumed either in one unit
or not at all. There are three consumers, all of whom have preferences given by
uh(0) = 0, uh(1) = 1, and vh(x0h) = x0h/100.15 The endowments of the indivisible
good are

(e1, e2, e3) =
(

4
10

,
3
10

,
3
10

)

so that the aggregate endowment of this good is 1. All consumers are endowed
with zero units of the divisible good. We have designed this example so that at
most prices, consumers will want to buy as much of the indivisible good as they
can. The sole role of the divisible good to provide consumers with a productive
use for any income that is not spent on indivisible goods. With the price of the
divisible good normalized to unity, let the prices of the indivisible good in each
state be given by

p∗ = (p∗(1), p∗(2), p∗(3)) =
(

4
10

,
3
10

,
3
10

)

and let the allocation of the indivisible good be

x∗
1 = (1, 0, 0), x∗

2 = (0, 1, 0), and x∗
3 = (0, 0, 1)

Of course, everyone consumes zero of the divisible good. It is straightforward to
verify that this pairing of prices and allocations is a sunspot equilibrium. It can
also be shown that the equilibrium allocation is unique up to a relabeling of states
2 and 3. In other words, the only equilibrium allocations for this economy are x∗

and the allocation that is equal to x∗ but with the bundles given to consumers 2
and 3 reversed.

It is clear that the price vector p∗ violates (10), because consuming the good
with probability one-half costs either 2/5 (if state 1 is chosen) or 3/5 (if states 2
and 3 are chosen). However, showing that the allocation x∗ has no lottery equi-
librium counterpart requires showing something stronger: that no price vector
satisfying (10) supports x∗ as a sunspot equilibrium. In strictly convex economies
with smooth preferences, the price vector supporting a given equilibrium alloca-
tion is necessarily unique (up to the normalization) because it is determined by the
tangency of the indifference surfaces at the given allocation. With nonconvexities
or with kinks in the indifference surfaces, however, it is possible for many price

15 The linearity of the function vh is not important; all that matters for this example is that the
marginal utility of consumption of the divisible good at zero be small enough.
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systems to support the same allocation as an equilibrium, even from the same en-
dowment point. In this example, there are indeed many price vectors that support
x∗ as an equilibrium, but all are a scaling up or down of the vector p∗. In other
words, the equilibrium value of the divisible good is not uniquely determined, but
the relative values of the indivisible good in each state are. This implies that any
prices supporting x∗ as an equilibrium must violate condition (10), and therefore
by Proposition 5 the lottery allocation corresponding to x∗ cannot be part of an
equilibrium of the lottery economy.

This example is similar in spirit to one given in Shell and Wright (1993, pp. 9–
10). If the sunspot variable were continuous, in equilibrium each consumer would
receive the indivisible good with a probability equal to her endowment. In an
equilibrium based on the finite device generating (15), however, consumption in
state 1 trades at a discount and consumption in states 2 and 3 trade at a premium
relative to their respective probabilities. As a result, the first consumer is able to
consume the divisible good with a probability that is higher than her endowment,
while the other two consumers receive probabilities lower than their endowments.
These latter consumers are willing to pay the premium because they cannot afford
to consume the indivisible good in the (relatively) discounted state—the state is too
“large” and hence too expensive in absolute terms. The only other option they have
is to consume the divisible good, which gives very little utility. Thus this particular
randomizing device generates a “volume discount” for probability. Notice that the
same outcome could be achieved with a continuous sunspot variable if individual
endowments were changed to match the probability structure in (15). Hence, in
the context of this example, regulating stochastic trade can act as a substitute
for lump-sum taxes and transfers. This type of result does not depend on the
exact specification of probabilities in (15). If, for example, we were to change the
probabilities slightly to

π(1) = 0.52 and π(2) = π(3) = 0.24(16)

(p∗, x∗) would still be a sunspot equilibrium. The equilibrium prices in this example
are determined by the endowments; small changes in the probabilities will only
affect the size of the volume discount (or the amount of redistribution).

The pattern of costs represented by p∗ can be replicated in the lottery model by
a price function q. However, under the randomizing device represented by (15)
this function does not satisfy additivity. In particular, because there are two slots
on the wheel with probability one-quarter, additivity requires that the cost of con-
suming the indivisible good with probability one-half be equal to twice the cost of
consuming it with probability one-quarter. Therefore, the lottery prices capable
of replicating the cost structure contained in p∗ would generate an arbitrage op-
portunity for the lottery-producing firm, and hence cannot be equilibrium prices.
In fact, it is straightforward to verify that no lottery equilibrium exists for this
example. Suppose, however, that the randomizing device is changed slightly, say,
to that represented in (16). Then condition (10) is satisfied (by default) and the
sunspot equilibrium allocation discussed above does have a lottery equilibrium
counterpart. This fact is in line with Proposition 6: For almost all specifications of
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the probabilities of the three states, the sets of equilibrium allocations are equal.
However, for a set of “critical” devices, like that represented in (15), the lottery
model may be incapable of replicating the sunspot equilibrium prices, which leads
to the nonequivalence demonstrated in the example above.

One might be tempted to think that this example of nonequivalence, which
relies on the additivity restriction for lottery prices, is an artifact of our partic-
ular definition of the constrained lottery model. Perhaps if the mechanism for
producing lotteries had been defined differently, additivity of prices need not be
imposed and full equivalence between the sets of equilibrium allocations would
obtain. We now present a slightly richer example to show that this is not the case.
In this second example, the sunspot equilibrium will have two different consumers
purchasing the same consumption bundle with the same probability, but paying
a different price for it because they purchase it in different states. This is some-
thing that simply cannot happen in the lottery model, because in the lottery model
probabilities (rather than states) define the basic commodities to which the law of
one price applies.

EXAMPLE 2. There are three states of nature, with probabilities given by

π(1) = 0.5, π(2) = 0.4, and π(3) = 0.1

Notice that, as in the first example, there are two disjoint subsets of states that
have probability one-half: state 1 alone and states 2 and 3 together. There are
three consumers, all of whom have the consumption set C = Ch = {0, 1, 2}, and
have utility functions that are linear in consumption: uh(ck) = ck for all h and k.16

The total endowment in each state is 3 units of the good, which is divided into the
following private endowments

(e1, e2, e3) = (0.65, 0.45, 1.90)

We normalize prices so that
∑

s p(s) = 1 holds. Suppose that the price vector is
given by

p∗ = (p∗(1), p∗(2), p∗(3)) = (0.55, 0.40, 0.05)

Then consumption in state 1 trades at a premium and consumption in state 3
trades at a discount relative to their respective probabilities. At these prices, the

16 There is no divisible good in this example. However, in the equilibrium we construct all consumers
exhaust their income. Because of this, it is straightforward to add a divisible good with a zero total
endowment, as in the first example, and keep the equilibrium allocation (and price) of the indivisible
good the same. We go through the example without the divisible good to simplify the presentation;
we discuss below how to add the divisible good. Similarly, the assumption of risk neutrality is not
important. Each consumer will be choosing a strictly most-preferred bundle from a finite set, and
therefore small perturbations of the individual utility functions will have no effect on the equilibrium.
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consumption bundles demanded by each consumer are given by

x∗
1 = (1, 0, 2) , x∗

2 = (0, 1, 1) , and x∗
3 = (2, 2, 0)

These demands can be verified by computing the cost and the utility level as-
sociated with each of the 33 = 27 possible consumption bundles. Because total
demand for the good is equal to the total supply in each state, (p∗, x∗) is a sunspot
equilibrium.

It is clear that the price vector p∗ violates (10), but once again we must show that
no price vector satisfying (10) supports x∗ as a sunspot equilibrium. To see that this
is indeed the case, first note that the fact that no resources are wasted in equilibrium
implies that every consumer must exhaust her income in equilibrium.17 Therefore,
at any prices that support x∗ as an equilibrium, the three budget constraints must
hold with equality, as must our price normalization. The budget constraints are not
independent equations—an allocation that does not waste resources and satisfies
the first two will also satisfy the third at any prices. Therefore we drop the third
budget constraint and, writing the individual consumption plans x∗

h as row vectors
and using 1 to denote a vector of ones, arrive at the system of equations




x∗
1

x∗
2

1







p (1)

p (2)

p (3)


 =




e1

e2

1




There are no prices on the right-hand side of the budget constraints because of our
choice of price normalization. It is easy to verify that the left-most matrix is full
rank. As a result, there is a unique solution of this equation, which is given by the
equilibrium prices p∗. In other words, there is only one normalized price vector
that makes the consumption plan x∗

h affordable from endowment eh for all three
consumers. Thus there clearly cannot exist another price vector that supports x∗

as a sunspot equilibrium. Because the unique supporting price vector p∗ violates
(10), using Proposition 5 we can conclude that the lottery allocation corresponding
to x∗ is not an equilibrium allocation of the lottery economy.

In this sunspot equilibrium, consumer 1 receives one unit of the good in state 1
and pays p(1) = 0.55 for it. At the same time, consumer 2 receives one unit of
the good in states 2 and 3 at a cost of p(2) + p(3) = 0.45. In other words, two
consumers are buying the same consumption bundle with the same probability
and paying different prices for it. This is something that simply cannot happen in
the lottery model. Why is consumer 1 willing to buy one unit of the good in the
more expensive state (state 1) rather than switching to the cheaper states (2 and
3)? The reason is that buying one unit in state 1 allows her to be able to purchase
two units of the good in state 3. If she purchased one unit of the good in states 2
and 3 instead of in state 1, she would then be unable to consume any of the good

17 If some consumer were not spending all of her income, the value of total demand would be less
than the value of total supply. This would imply that aggregate consumption is less than the aggregate
endowment in some state, which is clearly not the case here.
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in state 1, leaving her strictly worse off. In other words, consumption in states 2
and 3 is not a perfect substitute for consumption in state 1, because consuming
in states 2 and 3 restricts the available options for consuming in the remaining
one-half of probability.

It is straightforward to add a divisible good to this example and verify that the
result does not depend on the absence of local nonsatiation. As in Example 1,
endow all consumers with zero units of the divisible good and set the price of
this good to unity. Then by choosing the functions vh so that the marginal utility
of consumption of the divisible good at zero is small enough, we can guarantee
that each consumer will demand zero units of the divisible good and the same
consumption plan for the indivisible goods. (For this example, a marginal utility
of one-half for all consumers will work.) Therefore we have an equilibrium of the
expanded economy with the same prices and allocation of the indivisible good as
given above.18 To clarify the intuition for why this trick works, consider again the
question of why consumer 1 is willing to buy one unit of the good in the expensive
state. If she were to instead buy one unit in states 2 and 3, she would again be
unable to afford any of the indivisible good in state 1. However, she can now spend
her leftover income on the divisible good. With the price of the divisible good set
to unity, she can afford 0.2 units. The trick is to set her utility function vh so that
she would rather have two units of the indivisible good with probability 0.1 than
these 0.2 units of the divisible good with certainty. Then she is still willing to pay
the premium to consume in state 1, and our equilibrium allocation is unchanged.

6. CONCLUSIONS

In this article, we have extended the analysis of the relationship between sunspot
equilibrium and lottery equilibrium allocations to a class of completely finite mod-
els. Previous work based on exchange economies with nonconvexities has shown
that when the randomizing device is continuous, the two sets of equilibrium allo-
cations are equivalent. Here we have focused on the case where the randomizing
device is discrete and the number of possible lotteries is finite. We have modified
the lottery model so that it can be applied to such economies. Our main finding
is that equivalence between the two sets of equilibrium allocations often, but not
always, obtains.

The key difference between the two models, and the source of potential
nonequivalence, is in their respective price systems. We show that equivalence
will hold unless prices in the sunspots model are such that buying a particular con-
sumption bundle with a particular probability has two (or more) different costs
assigned to it, depending on which states of nature the bundle is purchased in. For
all randomizing devices except a set of Lebesgue measure zero, this cannot happen
simply because each level of probability is generated by a unique combination of
states. A separate argument shows that equivalence also obtains for the “leading”
case where all events are equally likely. In this case, it is the ability of consumers

18 The supporting price vector for the equilibrium allocation is no longer unique; a range of prices
for the divisible good will lead to the same outcome. However, all supporting price vectors will have
the same relative prices for the indivisible goods in different states, and hence will violate (10).
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to substitute, or “shift” their purchases from high-cost to low-cost states, that is
critical for the result. Hence the equivalence result proven in Garratt et al. (2002)
does not depend on having a continuous sunspot variable (or unconstrained ran-
domization possibilities). It naturally extends to large class of models with finite
randomization possibilities.

We also present two examples of nonequivalence: sunspot equilibrium alloca-
tions with no lottery equilibrium counterpart. In these examples, there are dif-
ferent ways of combining states together to arrive at the same total probability.
In such cases, the extra generality available in the price system in the sunspots
model can be important. This result is similar in spirit to that of Garratt (1995),
who showed that all lottery equilibrium allocations have corresponding sunspot
equilibrium allocations, but that the converse is not true. It is important to bear
in mind, however, that the results here are fundamentally different because we
are using a generalized lottery model that constrains the randomization opportu-
nities available to agents. The sunspot equilibrium allocation that Garratt (1995)
shows to have no lottery equilibrium counterpart does have a counterpart in our
constrained lottery model. Our example of nonequivalence based on the addi-
tional flexibility of prices in the sunspots model is an entirely new and different
phenomenon. We have redefined the lottery model to bring it as close as possi-
ble to the sunspots model. Nonetheless, there are still some sunspot equilibrium
allocations that are not lottery equilibrium allocations.

As a final note, we reiterate that the environment we have studied in this analysis
is special. Markets are perfect, the number of commodities in the underlying
certainty economy is finite, there is no role for money, etc. Sunspot equilibrium
has been applied in a much wider range of settings. It is unclear whether and how
the lottery model can be extended to many of these environments. Recent steps in
this direction have been made by Berentsen et al. (2002), who introduced lotteries
into search-theoretic models of money, and Rustichini and Siconolfi (2003), who
study both sunspot and lottery equilibria in a growth model. Whenever the lottery
model is extended to a new environment, it is natural to ask whether or not
equivalence of the two sets of equilibrium allocations obtains. We expect that the
basic approach we have taken here, if not our specific results, will be useful in
addressing the equivalence question whenever it arises.

APPENDIX

PROOF OF PROPOSITION 1. (a): Suppose that (x∗, x∗
0) is feasible, so that we have

x∗(s) ∈ F for all s and
∑

h∈H x0h ≤ ∑
h∈H e0h. To show that the corresponding

lottery allocation is also feasible, we need to show that (i)
∑

h∈H c0h ≤ ∑
h∈H e0h

holds and (ii) y ∈ Y holds. (That the individual lotteries being consumed are equal
to those being produced is guaranteed by the definition of y in (9).) The first of
these conditions is immediate from the definition of c0h in (8).

For the second, we need to construct the assignment functions that distribute
each individual lottery on the roulette wheel. From (9), we see that the firm is buy-
ing one degenerate lottery from each consumer (her endowment) and selling one
possibly nondegenerate lottery to each consumer (her consumption). Arranging
the degenerate lotteries is trivial (the same bundle is assigned to every slot). For
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the possibly nondegenerate lotteries, let f : M → S be the function that maps
slots on the wheel to states in the sunspots model. We then define the assignment
function for individual lottery δh by

gh(m) = xh( f (m)) for all m ∈ M(17)

In other words, the lottery-producing firm arranges the stochastic allocations on
the wheel in exactly the same way that they are arranged in the sunspots model.
Then (4) must clearly hold for each h. Furthermore, we can write (5) as follows∑

j,n

Ij,ng j,n (m) =
∑
h∈H

(−eh + gh (m))

=
∑
h∈H

(−eh + xh ( f (m)))

=
∑
h∈H

(−eh + xh(s)) ≤ 0 for all s

In this way, feasibility of the sunspot allocation guarantees feasibility of the lottery
allocation.

(b): The proof of the converse is essentially the same argument in reverse. We
start with a feasible lottery allocation and a sunspot allocation that induces it.
Feasibility of the lottery allocation implies the existence of assignment functions
gh, which correspond to the sunspot consumption plans as in (17) above. The
lottery feasibility condition (5) then implies that we have x(s) ∈ F for all s, and
therefore the sunspot allocation is also feasible. �

PROOF OF PROPOSITION 2. We prove this proposition in steps, beginning with a
pair of lemmas.

LEMMA 1. For any equi-probable set A, if xh satisfies∑
s∈S

p(s) · xh(s) ≤
∑
s∈S

p(s) · xt
h(s)

for t = 1, . . . , NA, then we have∑
s∈S

p(s) · xh(s) ≤
∑
s∈S

p̄A(s) · xh(s)

PROOF OF LEMMA 1. The hypothesis of the lemma implies that we have

∑
s∈S

p(s) · xh(s) ≤ 1
NA

NA∑
t=1

∑
s∈S

p(s) · xt
h(s)

=
∑
s∈S

p(s) ·
NA∑
t=1

xt
h(s)
NA
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The right-hand side of this inequality replaces consumption in state s with the
average consumption over all states in A. Because this average is the same for all
s in A, we can replace the price vector p with p̄A without changing the value of
the inner product;

∑
s∈S

p(s) ·
NA∑
t=1

xt
h(s)
NA

=
∑
s∈S

p̄A(s) ·
NA∑
t=1

xt
h(s)
NA

Note that since p̄A takes on the same values for all s in A, we can “undo” the
averaging of the allocation. In other words, for states in A, it makes no difference
if we multiply the average price by the average consumption in each state or if we
multiply the average price by the actual consumption in each state;

∑
s∈S

p̄A(s) ·
NA∑
t=1

xt
h(s)
NA

=
∑
s∈S

p̄A(s) · xh(s)

This establishes the desired result. �

The next lemma shows that we can make a stronger statement about equilibrium
prices.

LEMMA 2. Suppose (p∗, x∗) is a sunspot equilibrium. Then for any equi-probable
set A, ∑

s∈S

p∗(s) · xh(s) =
∑
s∈S

p̄∗
A(s) · xh(s)

must hold for all h.

PROOF OF LEMMA 2. Given local nonsatiation, individual optimization implies
that an equilibrium allocation x∗

h must be the minimal cost element of any A-shift
class TA(x∗

h). Therefore, by Lemma 1, we have∑
s∈S

p∗(s) · x∗
h(s) ≤

∑
s∈S

p̄∗
A(s) · x∗

h(s)

for all h. Suppose that this holds with strict inequality for some h. Then summing
this inequality across all consumers and using the fact that each consumer’s budget
constraint must hold with equality (again due to local nonsatiation) yields∑

s∈S

p∗(s) ·
∑
h∈H

eh <
∑
s∈S

p̄∗
A(s) ·

∑
h∈H

x∗
h(s)

But market clearing (or the feasibility of x∗) requires∑
h∈H

x∗
h(s) ≤

∑
h∈H

eh
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for every state s, and therefore we have

∑
s∈S

p∗(s) ·
∑
h∈H

eh <
∑
s∈S

p̄∗
A(s) ·

∑
h∈H

eh

Because we have
∑

s∈S p∗(s) = ∑
s∈S p̄∗

A(s), the above inequality is a
contradiction. �

With these two lemmas in hand, we are ready to prove the statement in the propo-
sition. It suffices to show that (x∗

h, x∗
0h) is still an optimal choice for consumer h

when prices are given by p̄∗
A. Lemma 2 shows that (x∗

h, x∗
0h) is still affordable at

these prices. Suppose it is not optimal for some consumer h. Then there exists
some other plan (x̃h, x̃0h) that is affordable at prices p̄∗

A and is strictly preferred to
(x∗

h, x∗
0h). Thus we would have

∑
s∈S

p̄∗
A(s) · x̃h(s) + x̃0h ≤

∑
s∈S

p̄∗
A(s) · eh + e0h =

∑
s∈S

p∗(s) · eh + e0h

Let ỹh denote the minimum cost element of TA(x̃h) at prices p∗. Then (ỹh, x̃0h) is
also strictly preferred to (x∗

h, x∗
0h) and ỹh costs exactly the same as x̃h at prices p̄∗

A.

Therefore we have

∑
s∈S

p̄∗
A(s) · ỹh(s) + x̃0h ≤

∑
s∈S

p∗(s) · eh + e0h

Because ỹh is the minimum cost element of its A-shift class, Lemma 1 implies that
we have

∑
s∈S

p∗(s) · ỹh(s) ≤
∑
s∈S

p̄∗
A(s) · ỹh(s)

meaning that (ỹh, x̃0h) was affordable at prices p∗. This contradicts the optimality
of x∗

h at prices p∗. �

PROOF OF PROPOSITION 3. Let e� ∈ C denote the commodity bundle that has one
unit of good � and zero units of every other good, and let 0 ∈ C denote the zero
vector, i.e., the commodity bundle that contains zero units of every indivisible
good. Let δ(θ,�) denote the lottery that delivers the commodity bundle e� with
probability θ and the commodity bundle 0 with probability (1 − θ). Note that this
lottery is in �(C) if and only if θ is in �. Define the function q : � → R

L
+ by

q�(θ) ≡ φ
(
δ(θ,�))
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for every θ ∈ � and for � = 1, . . . , L. Consider an arbitrary lottery δ j ∈ �(C) and
suppose that

φ(δ j ) >

K∑
k=1

q(δ j (ck)) · ck(18)

held. (The reverse case is completely symmetric.) We will show that the firm could
then make unbounded profits by purchasing the components needed to construct
δ j separately and selling the lottery δ j . Let c�

k denote the number of units of good
� contained in the kth commodity bundle, and define θk ≡ δ j (ck). Consider the
following production plan. For all k and �, set

y
(
δ(θk,�)) = c�

k

Then the firm is buying c�
k units of the lottery that delivers one unit of good � with

the same probability that the lottery δ j assigns to the commodity bundle ck. The
total cost of purchasing these lotteries is equal to the right-hand side of (18). Set
y(δ j ) = 1, so that the firm is selling one unit of the lottery δ j . Set all other values of
y equal to zero. Under (18), this plan generates positive profits. All that remains
is to show that this plan is feasible, i.e., that there exist assignment functions such
that (4) and (5) are satisfied.

Because δ j is in the set �(C), we know that there exists a function ĝ such that

δ j (ck) =
∑

m:ĝ(m)=ck

πm

holds for all k. For each lottery δ(θk,�), let the arrangement function be denoted by
gk,� and set

gk,�(m) =
{

e� if ĝ(m) = ck

0 otherwise

Condition (4) is then satisfied automatically: The arrangement gk,� delivers one
unit of good � with probability θk = δ j (ck), which is the definition of the lottery
δ(θk,�). Recall that the firm is purchasing c�

k units of this lottery; arrange all of these
units according to the same function gk,�. Let gk denote the vector of functions
(gk,1, . . . , gk,L). Then the vector of net resources used by the firm if slot m is realized
is given by

ĝ (m) −
K∑

k=1

I(ĝ(m)=ck)gk (m) · ck = 0

for all m, where I is the standard indicator function. Hence this production plan
satisfies (5) and is feasible. Since this plan can be replicated at an arbitrarily large
scale, under any price system satisfying (18) (or satisfying the reverse inequality)
the firm’s problem (6) has no solution. �
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PROOF OF PROPOSITION 4. Suppose prices are not additive. Using Proposition 3,
this would imply that there exists a set A⊆ M of slots such that q�(

∑
m∈Aπm) �=∑

m∈A q�(πm) for at least one good �. Suppose that

q�

(∑
m∈A

πm

)
>

∑
m∈A

q�(πm)(19)

holds. (The reverse case is symmetric.) Consider the following production plan. For
each slot m ∈ A, the firm buys one unit of the lottery that delivers one unit of good
� with probability πm and nothing with probability (1 − πm). The firm sells one
unit of the lottery that delivers one unit of good � with probability

∑
m∈Aπm and

nothing with probability (1 − ∑
m∈Aπm). This plan is feasible by construction—the

firm takes in and gives out one unit of good � if one of the slots in A is realized,
and does nothing otherwise. Under (19), this plan yields a strictly positive profit.
Since the firm could replicate this plan on an arbitrarily large scale, problem (6)
has no solution. �

PROOF OF PROPOSITION 5. (a): First, suppose that (p∗, x∗, x∗
0) is a sunspot equi-

librium with p∗ ∈ P̂. Then we know that at prices p∗, (x∗
h, x∗

0h) solves problem (2)
for every h. By applying a change of variables to replace the summation across
states with a summation across the consumption set, we can rewrite this problem
as

max
xh

K∑
k=1

uh(ck)π ◦ x−1
h (ck) + vh (x0h)

subject to
K∑

k=1


 ∑

s∈x−1
h (ck)

p∗(s) · ck


 + x0h ≤

∑
s∈S

p∗(s) · eh + e0h

xh ∈ X, x0h ∈ R+

Here, x−1
h (ck) is the set of states in which the consumer buys the bundle ck. Since

p∗ ∈ P̂ holds, we can use (11) together with the definitions δ∗
h = π ◦ x∗−1

h and c0h =
x0h to write the problem as

max
δh

K∑
k=1

δh(ck)uh(ck) + vh (c0h)

subject to
K∑

k=1

(q∗ (δh (ck)) · ck) ≤ q∗ (1) · eh

δh ∈ �(C), c0h ∈ R+

which is exactly the consumer’s lottery problem as given in (13). Hence there
exists a q∗ ∈ Q at which (δ∗

h, c∗
0h) solves problem (13) for all h, and condition

(i ′) in the definition of lottery equilibrium is satisfied. Condition (ii′) requires
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that y∗ be an optimal choice for the firm at prices q∗. It is easy to verify that y∗

yields zero profits at these prices. Because the prices are of the no-arbitrage form
(see Section 4.2), positive profits are not possible and therefore the firm is indeed
optimizing. Condition (iii′) follows directly from Proposition 1. Therefore we have
a q∗ ∈ Q such that (q∗, δ∗, c∗

0h, y∗) is a lottery equilibrium.
(b): Now suppose that (q∗, δ∗, c∗

0h, y∗) is a lottery equilibrium with q∗ ∈ Q. Be-
cause equilibrium prices must be of the no-arbitrage form, reversing the argument
above shows that at the unique price function p∗ corresponding to q∗ through (11),
(x∗

h, x∗
0h) is optimal for each consumer h. Therefore condition (i) in the definition

of a sunspot equilibrium is satisfied. Note that this p∗ is in the set P̂ by definition.
Condition (ii) in this definition follows directly from Proposition 1. Therefore we
have a p∗ ∈ P̂ such that (p∗, x∗, x∗

0) is a sunspot equilibrium. �

PROOF OF PROPOSITION 6. The set of all M-slot randomizing devices can be
represented as the (M − 1)-dimensional unit simplex, which we denote by �M.
The possibility that there exists a sunspot price function with no lottery counterpart
can only arise if there exist nonempty, disjoint sets A, B⊂ M such that (14) holds. If
there are no such sets A and B, then the sets P̂ and P are identical and Proposition 5
establishes full equivalence between the sets of equilibrium allocations. Let αn

denote the number of ways of choosing exactly n of the M slots. Let βn be the
number of ways of dividing these n elements into two nonempty, disjoint groups.
For any finite M and n, both αn and βn are finite numbers. There are then

M∑
n=2

αnβn

ways of creating nonempty, disjoint sets A and B that might satisfy (14); this
number is also finite. For each possible (A, B) combination, (14) holds on a linear
(M − 2)-dimensional subset of �M, which has Lebesgue measure zero in �M.
Hence the set of randomizing devices satisfying (14) is a finite union of sets of
Lebesgue measure zero, and therefore itself has Lebesgue measure zero in �M.
Since we know that equivalence of the sets of equilibrium allocations obtains
for all randomizing devices except possibly those for which (14) holds, we have
established the proposition. �
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