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We investigate the dependence of the dynamic behavior of an endogenous growth
model on the degree of returns to scale. We focus on a simple (but representative)
growth model with publicly funded inventive activity. We show that constant
returns to reproducible factors (the leading case in the endogenous growth
literature) is a bifurcation point, and that it has the characteristics of a transcritical
bifurcation. The bifurcation involves the boundary of the state space, making it
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difficult to formally verify this classification. For a special case, we provide a trans-
formation that allows formal classification by existing methods. We discuss the new
methods that would be needed for formal verification of transcriticality in a broader
class of models. Journal of Economic Literature Classification Numbers: O41,
030. © 2001 Academic Press

Key Words: returns to scale; transcritical bifurcation; boundary bifurcation;
endogenous growth; inventive activity.

1. INTRODUCTION

The mathematical theory of bifurcations has been used to analyze and
categorize the dynamic behavior of a wide variety of economic models. The
area that has probably received the most intensive application is the study
of business cycles and economic fluctuations, where bifurcation theory has
been useful for proving the existence both of deterministic cycles?> and of
sunspot equilibria.’> Other applications have been found throughout
economics, ranging from growth and development to the tatonement
process in general equilibrium to continuous-time macroeconometric
models.* All of these applications have employed the standard theory of
bifurcations, as presented by Guckenheimer and Holmes [15], Wiggins
[27], and others, which deals with dynamical systems defined on open sets.
In particular, this implies that all relevant trajectories, including steady
states, must be contained in the interior of the state space. In many
economic models, however, the state space contains a boundary. The
standard neoclassical growth model, for instance, has a steady state with
zero capital, on the boundary of the set of feasible capital stocks. As long
as the bifurcation that one is interested in analyzing does not involve this
steady state, there is no problem in applying the standard theory. Bifurca-
tions that do involve this boundary steady state, however, cannot be
analyzed by direct application of the standard techniques.

We study a growth model in which a bifurcation event occurs on the
boundary of the state space. We use graphical methods to analyze this
event and show that, under the appropriate transformation, it displays the
signature pattern of a transcritical bifurcation. We then show that, in a
special case, applying a change of coordinates allows us to formally verify
this classification using standard (interior) techniques. Our method does
not, however, allow us to formally classify the bifurcation in the general

2 See, for example, Benhabib and Nishimura [6], Benhabib and Rustichini [ 7], Cartigny
and Venditti [10], and Boyd and Smith [8].

3 See, among others, Grandmont [ 13], Azariadis and Guesnerie [2] and Chiappori et al.
[11].

4See Matsuyama [19] and Becker and Foias [5] on the first topic, Bala [3] on the
second, and Barnett and He [4] on the third.
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model. We conclude by discussing the problems that generalization
presents and what approaches we think might be successful in addressing
them.

Ours is an endogenous growth model with increasing returns to scale in
production. Our interest is in how the dynamic behavior of the economy
is affected by the degree of returns to scale in the set of reproducible factors
of production. Much is already known about this problem in a variety of
settings. When there are decreasing returns to the set of reproducible
factors, our model behaves very much as in Solow [25] and Diamond
[12]; there is an interior steady state to which all interior trajectories
converge, and an unstable steady state at the origin. When there are exactly
constant returns, the origin is typically the only steady state and all interior
trajectories converge to a balanced growth path. In this case our model
reduces to the AK model that has received so much attention in the
endogenous growth literature.” When there are increasing returns to the set
of reproducible factors, there is an interior steady state that is unstable.
Trajectories starting high enough experience unbounded growth while tra-
jectories that start too low decay to the origin, a phenomenon often
referred to as a “poverty trap.” Such morphogenetic models have been
studied by Shell [22, 23], Azariadis and Drazen [ 1], and others. Our goal
is to synthesize these results for the different cases by providing a complete
analysis of how the global dynamics vary with the degree of returns to scale
and by analyzing the bifurcation that divides these regimes.

Our analysis sheds light on the mathematical nature of a strong criticism
of endogenous growth theory made by Solow [26] and others. The recent
endogenous growth literature has concentrated almost exclusively on
models that generate balanced growth paths. As indicated in the discussion
above, the existence of a balanced growth path requires that there be
exactly constant returns to the set of reproducible factors of production.
This led Solow [ 26, p. 13] to remark that “the key hypothesis underlying
at least the AK version of New Growth Theory is completely nonrobust.
Nature must do exactly the right thing or else the theory evaporates one
way or another.” Our analysis formalizes the mathematics behind this
criticism: the 4K model is based on a bifurcation point in parameter space.
The global dynamics are necessarily qualitatively different if the returns-to-
scale parameter is even slightly different from its bifurcation value.

In the next section, we describe our model and how it relates to others
in the endogenous growth literature. In Section 3, we provide an analysis
of the equilibrium trajectories generated by the model. In Section 4, we give
a graphical analysis of the bifurcation, while Section 5 contains the formal
bifurcation analysis for a special case of the model. In Section 6, we

5 See, for example, McGrattan [20] and the references therein.
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conclude by discussing the difficulties involved in generalizing the formal
result.

2. THE MODEL

Our analysis is in discrete time. Had we cast the model in continuous
time, for sufficiently strong increasing returns our production technology
would have allowed infinite output after a finite amount of time. By
using discrete-time analysis, we avoid this possibility. A second important
modelling decision regards the lifetime of the consumers in the model.
Much of the literature on endogenous growth uses infinitely lived agents,
but we choose to work with an overlapping-generations model where each
consumer lives for two periods. This allows us to avoid the possibility that
an individual agent may, under strongly increasing returns, a-ttain unbounded
levels of lifetime utility. It also serves to simplify the consumption side of
the model considerably, allowing us to concentrate on the production side.

2.1. Production. Production in our model takes place using three
inputs: technology, physical capital, and labor. We assume that technology
is a nonrival input and that production exhibits exactly constant returns to
scale in labor and physical capital. This second assumption is justified by
a standard replication argument: since technology is nonrival, doubling
capital and labor should exactly double output. We assume that
technological progress occurs through the allocation of resources to inven-
tive activity.® We also assume that technology is nonexcludable; once a
new technology is invented, it is immediately available to all producers.
One interpretation of technology in our model is the output of basic scien-
tific research. These assumptions allow us to work with perfect competition
in labor, capital, and product markets. In this way, the model here is much
simpler than those in Romer [21], Grossman and Helpman [14], and
others, where technological advances are at least partially protected by
patent systems. This simplicity allows us to present our bifurcation analysis
using closed-form expressions for the savings function, etc., but it may not
be critical for our qualitative results.

It is worth emphasizing that these assumptions imply that production in
our model necessarily displays increasing returns to the fotal set of factors
of production: technology, capital, and labor. Our assumptions imply that
payments to capital and labor will exhaust output, so that in competitive
equilibrium profits will necessarily be zero. Competitive, profit maximizing
firms will not undertake any investment in technological progress, because
they are unable to internalize any of the return from this investment. As a

6 This is in the tradition of Shell [22, 23, 24].
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consequence, any investment in inventive activity must be publicly
financed. We assume the presence of a government that imposes taxes on
labor income and invests the revenue in inventive activity.

We use 4 to denote the stock of technology, K the stock of physical
capital, and L the stock of labor (all nonnegative quantities). Total output
Y is given by the function F(A, K, L; Z), where the nonnegative scalar 1
measures the degree of returns to scale in production. We begin by placing
the following restrictions on F:

(A1) F(O,K,L;2)=F(A,0,L; 2)=F(A,K,0; 1)=0 for any 4, K, L
and 4

(A2) F(A, K, L; /) is strictly increasing in (4, K, L) on R?

(A3) F is three-times continuously differentiable on R?% , and
continuous on R*

(A4) F is homogeneous of degree one and concave in (K, L)
(A5) F is homogeneous of degree A in (4, K)

(A6) The cross-partial derivative F; is positive for all 4, K, L and
Zin R%

The first two assumptions are standard. The third guarantees that the equi-
librium difference equation will be twice continuously differentiable, and
thereby allows us to use the results of smooth bifurcation theory. The
fourth assumption can, as mentioned above, be justified using a standard
replication argument. The fifth allows us to talk unambiguously about the
degree of returns to scale in technology and capital, the reproducible fac-
tors of production in this model. Our primary interest, therefore, is in how
the equilibrium dynamical system varies with the parameter 4. The final
assumption is a restriction on the form of technological change; increases
in technology must increase the marginal product of labor. We will see
below that this implies that private saving is an increasing function of the
level of technology.

We employ a simple one-sector technology in which output can be con-
verted into either new capital or new technology. Each period a fraction u
of the capital stock is lost to depreciation, as is a fraction p of the stock
of technology. As in Shell [22], this depreciation of A4 is taken to be a
reduced-form representation of some underlying process where there are
frictions in the transfer of knowledge from one generation to the next (see
Jovanovic and Nyarko [ 18] for an explicit model of this process).

Using lower-case letters to denote per capita variables, we have

K
yv=f(4,k; i)zF(A,L, l;i>.
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The intensive production function f inherits the following properties from
F:on R?_, it is both strictly increasing in (4, k) and C?, it has f(0, k; 1) =
f(4,0;2)=0, and it is homogenous of degree A in (4, k).

Firms take the level of 4 as given and choose & to maximize profits. The
first-order conditions of a firm’s problem are therefore completely standard:
they require that the wage for labor and the rental rate for capital equal the
marginal products of these factors. Denoting these by w and r, respectively,

we have

wo=f(A;, k) =k, fil Ay ks 2)=w(A,, ki A) (2.1)
re=filA,, ki 2). (2.2)

Note that the wage function w is homogeneous of degree A in (A4, k), while
the rental rate r is homogeneous of degree (41— 1). Both are twice
continuously differentiable functions of (4, k, 4).

The government taxes labor income in order to finance inventive activity.
For simplicity, we assume that wages are taxed at a rate that is constant
over time and given by 7. Since all inventive activity is publicly financed,
total expenditure on inventive activity at time ¢ is given by tw,L,.

2.2. Consumers. Each consumer lives for two periods and consumes the
single commodity in both periods. Let ¢} denote the consumption in period
s of the consumer born in period ¢, and let ¢, be the vector of consumptions
(¢!, ¢!*1). Each consumer has preferences over consumption represented by
the utility function u(c,)=(c!)” (¢!*')' =7, In addition, each consumer is
endowed with one unit of labor when young, which she supplies inelasti-
cally, earning the wage w,. The problem of a consumer born in period ¢ is

then to choose a savings function s, to solve
max(cl)? (¢} )17
subject to
c=(1—-1)w,—s,
At =5,r, o+ 1—np).
The savings function that solves this problem is given by
s,=(1—=y)(1—=1)w,. (3)

The fact that saving is independent of the rate of return is a consequence
of the assumptions of log-linear preferences and no old-age income. In this
case, the income and substitution effects associated with a change in the
rate of return exactly cancel, leaving the optimal level of saving unchanged.
This results in a substantial simplification of the equilibrium law of motion
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for the stock of physical capital. The form of the savings function implies
that total investment in physical capital depends on payments to labor and
not on payments to capital. This combines with assumption (A6) to
generate a positive relationship between the level of technology and the
level of private savings.

We analyze the model with no population growth. It is worth noting
that there is a scale effect in this model. Since the use of technology is non-
rival, it is the total level of technology A, not the per-capita level, that
determines per-capita output. Therefore, it is the total level of investment
in inventive activity tw,L that affects future per-capita output. Ceteris
paribus, an economy with a larger population will accumulate more
technology and thus grow faster. This scale effect is found in many models
with nonrival technology.” We do not focus on this feature. Since we take
L to be fixed, there is no further loss in normalizing it to unity and studying
an economy with a single agent per generation.

3. EQUILIBRIUM

The market-clearing conditions for this economy are (1), (2), and (3),
together with

kip1=s5,

Notice that this requires savings by the young consumer in period 7 to
equal the entire period ¢+ 1 capital stock, not just new investment. This
implies that existing capital crowds out new investment completely. The
depreciation parameter u therefore has no effect on the accumulation of
capital, although it does affect the level of old-age consumption.

Combining these equations shows that the dynamics of this economy are
governed by the system

A=A, ks )+ (1—p) 4,
kipr=1=y)0=1)w(d,, k;2).
The remainder of the paper is dedicated to analyzing this dynamical
system. We begin with the steady-state analysis.

3.1. Existence of Steady States. 1t follows directly from (Al) that there
always exists a trivial steady state at the origin. If p is positive, no other
points on the axes are stationary. Trajectories on the k axis jump to the
origin, while trajectories on the 4 axis decay to the origin asymptotically.

7 A nice discussion and list of references is contained in Jones [16].
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An interior steady state, where we have 4,, ,=A4,=4 and k, =k, =k,
must satisfy

A=Sw(4, k; 2)
p

k=(1—yp)1—=1)w(4,k; 1).

This implies that at any steady state, the ratio of technology to physical
capital must be given by

L
p(1=7)(1—1)

A
= o, (4)

a constant independent of A. This ray from the origin plays a pivotal role
in the analysis that follows. It is interesting to note how the different
parameters affect the slope of this ray. Since taxation funds technology for-
mation and depresses capital accumulation, higher levels of 7 increase the
AJk ratio and lead to more technology-intensive steady states. Higher levels
of p have the opposite effect, retarding the formation of technology and
leading to more capital-intensive steady states. Higher levels of y mean that
consumers place a higher weight on consumption in the first period of life,
and hence save less. This depresses capital accumulation and leads to more
technology-intensive steady states, since the taxes funding technology
formation are on total labor income, not consumption.

The fact that any steady state must fall on this ray allows us to reduce
the analysis of steady states to a one-dimensional problem, a major sim-
plification. Steady state levels of the capital stock are given by the solutions
to

gk)=(1—y)(1 —7)w(ok, k; 1) —k=0. (5)
Using the homogeneity of w, this can be written as
gk)y=(1—y)(1—1)w(a, 1; 1) k* —k=0.
The derivative of the function g is then given by
g(k)=(1=y)1—1)wlo, 1;2) 2k*~"—1. (6)

This implies that we have

. , 0 A<l
lllinog(k)_{—l for /1>1}
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and

—1 A<
li (k)= fi .
jm g={ 1 ST

Since g is continuous and g(0) =0, an interior steady state must exist for
every value of A, except possibly unity. By looking at the second derivative
of g, we can verify that the interior steady state is also unique in all of these
cases. Differentiating (6), we have

g'(k)y=(1—=y)(1—=1)w(a, 1;A) MA—1)k*2,
so that

<0 A<
n f .
g(k){>o o A>1}

When 1 is less than unity, g is strictly concave, and when 4 is greater than
unity, g is strictly convex. In either case, the interior steady state is unique.
Thus we have established the following proposition.

ProOPOSITION 1. When A#1, there exists a unique interior steady state.
The origin is a steady state for all values of A.

When 1 is equal to unity, g is linear. In this case, there exists an interior
steady state if and only if g is equal to zero everywhere, in which case there
are a continuum of steady states. Dividing (5) through by ((1 —y)(1 —1)) "'k
and using the homogeneity of w shows that this occurs when

w( S, (1—0)(1—y)1])=1 (7)
G )

If (7) holds, then every point along the ray where 4 = ok is a steady state.
This condition will reappear later in the analysis and is important for
determining the qualitative properties of the system as A is varied. It is a
condition solely on the parameters of the model, but the form of the equa-
tion follows directly from the consumer’s savings function. Recall that the
consumer will save (1 —y)(1 —1)w(4,, k,; 2). Condition (7) comes from
equating these savings to the current level of the capital stock k,, evaluat-
ing this along the 4 =cok ray, and dividing the variable k, out using the
homogeneity of w. When this condition holds, the consumer’s savings rule
will exactly replenish the capital stock whenever 4 =gk, which is to say
that every point on this ray is a steady state.
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If /4 is equal to one and (7) does not hold, then no interior steady states
exist. If, instead, we have

W<T,(1—‘L’)(1—y);1>>1, (8)
p

then g’ is positive along the 4 =gk ray and both 4 and k are growing
along the ray. In this case, the consumer’s savings rule generates an
increase in the capital stock whenever 4 = ok. We refer to an economy for
which (8) holds as a “high-savings” economy. It is important to bear in
mind that consumers have the same savings rule whether an economy is
“high-savings” or not. The term simply refers to a set of parameter values
that, when inserted in the decision rule, generate positive net investment
along the 4 = gk ray. If the inequality in (8) is reversed, g’ is negative and
both 4 and k are decaying along the ray. We refer to this as the “low-
savings” case. It is clear that the parameter values at which (7) is satisfied
represent a very special case; the global dynamics when A=1 holds are
qualitatively different for high savings and low savings economies.

3.2. Characterization of Steady States. The derivative of the function g
defined in (5) above is also useful for characterizing interior steady states.
Let T and D denote the trace and determinant, respectively, of the
Jacobian matrix J for our dynamical system. The eigenvalues of J are given
by the roots of the characteristic polynomial p(x), where

p(x)=x*>—Tx+D.

It is straightforward to establish that (i) both 7 and D are nonnegative and
(if) the roots of this polynomial are always real and distinct. This implies
that both eigenvalues are nonnegative and that the stability of a steady
state is determined by the sign of the expression

p(l)=—pg'(k*).

If we have g'(k*) > 0, so that p(1) is negative, the two eigenvalues must lie
on opposite sides of unity and therefore the steady state is a saddle point.
If we instead have g'(k*) <0, so that p(1) is positive, the two eigenvalues
must lie on the same side of unity. It is straightforward to show that in this
case the trace of J is necessarily less than 2. Since the trace is equal to the
sum of the eigenvalues, each eigenvalue must be less than unity and hence
the steady state is locally stable. Thus we have a simple result: a steady
state (4*, k*) is a sink if g'(k™*) is negative and is a saddle point if g'(k*)
is positive. The case of g'(k*)=0 is a degenerate one to which we will
return later.
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It is worth reemphasizing the ability of the univariate function g to deter-
mine the behavior of the steady states of the bivariate dynamical system. If
g(k) is positive, both A and k are increasing at points along the 4 = ok ray
(although the trajectories need not stay on the ray). When g(k) is zero, we
have a steady state, and when g(k) is negative, both 4 and k are falling at
points along the ray. In addition, we have seen that if k* is a steady state
value and g'(k*) is negative, then (A4*, k*) is locally stable. If instead
g'(k*) is positive, then (4*, k*) is a saddle point. From the analysis of the
previous section, it is clear that the sign of g'(k*) is determined by the
magnitude of the parameter . When 4 is below unity, g is strictly concave
and hence at the interior root g'(k*) is negative. When A is above unity, g
is strictly convex and at the interior root g'(k*) is positive. Combining this
with the above results yields the following proposition.

PropoSITION 2. When A is less than unity, the unique interior steady
state is a sink, and when 1 is greater than unity it is a saddle point. When
A is equal to unity, an interior steady state, if it exists, is nonisolated.

4. GRAPHICAL ANALYSIS

It should be clear at this point that the dynamics of our system undergo
a qualitative change when A passes through unity. In this section, we use
graphical methods to analyze this event. In order to give exact expressions
for the figures that we draw, we specialize to log-linear production,®

fA4, k)= (A" k),

with 0 <a<1 and 0<A<1/a. This function is clearly homogeneous of
degree 1 in (4, k). It is straightforward to show that, in this case, the wage
function is given by

w(d, k)= (1— o) (A ~*%k*)*
and the equilibrium dynamical system is given by
Ay =1(1—Ja) (ALK + (1= p) 4,

kpvr=(1=p)(1=0)(1—da)(4; k)™

8 In this case our model resembles a two-dimensional version of that in Section 5 of Jones
and Manuelli [17]. That section studies the global dynamics of an overlapping-generations
model with log-linear production and a nonconvexity generated by externalities.
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4.1. Phase Diagrams. We now proceed to construct the phase diagram
for this system. The level of technology is unchanging when A4,,,=4,,
which occurs when either 4 =0 or when we have

1 — Jo)\ /(=41 —a))
A=<T( ; O‘)> JAa/ (1 =21 =) 9)

Likewise, the level of capital is unchanging whenever k,,,=¥k,, which
occurs when either Kk =0 or when we have

1
A=<<1—y>(1—r>(1—m

The curves described in (9) and (10) are therefore the interior nullclines of
the system.

When A <1 holds, the curve defined in (9) is strictly concave and the
curve defined in (10) is strictly convex. Both begin at the origin, and we
know from above that there is a unique interior crossing that represents a
locally stable steady state. It is fairly straightforward to show that this
steady state attracts all interior trajectories and that there is no oscillating
behavior in this system. The phase diagram is given in Fig. 1.

As A increases toward unity, the steady state values of 4 and & can either
increase or decrease. Letting 4* and k* denote these values, we can solve
for the interior steady state in terms of parameters,

1/A(1 — o)
)> k(l—izx)/}.(l—a)' (10)

T 1/(1—=2)

A*={(1 —Aat) <p>l_h((l -1 —f))“}

1/(1—=2)

2\ A —a)
e = @ (S — oy o)

Since the steady state must, for any value of 4, lie along the 4 = gk ray, we
know that 4* and k* must move in the same direction in response to a
parameter change. It is straightforward to see that, for A close enough to
unity, each of these expressions is increasing in / if and only if

1—oa
(1—O<)<;> (1= =1))*>1 (11)

holds, that is, if and only if the high-savings condition defined in (8) holds.
When this is the case, both A* and k* diverge to infinity as A approaches
unity. When the inequality in (11) is reversed, both 4* and k* converge to
zero as A goes to unity. In either case, the steady state approaches one of
the boundaries of the state space.
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A4.,=4,

v
Rl

FIG. 1. Phase diagram for 1< 1.

Suppose the high-savings condition holds. As A approaches unity, the
nullclines “open up” in such a way that their crossing point (the interior
steady state) diverges to infinity. When we have A=1, the nullclines are
linear, with the curve given in (9), where A is constant, being the steeper
of the two. The A =0k ray now represents a balanced growth path to
which all interior trajectories converge. The growth rate along this path is
given by

At+1_Ar kz+1_kz

T 1—oa )
A, - k, =(l—a) <p> [(1=y)(1—=7)]*—1, (12)

which is positive by the high savings condition. This situation is depicted
in Fig. 2a.

If, instead, the economy is characterized by low savings, the nullclines
“close” as A approaches unity and the interior steady state approaches the
origin. When A =1 holds, the nullclines are again linear, but now the curve
given by (10), where k is stationary, is the steeper of the two. There is still
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FIG. 2. Phase diagram for A =1.

a balanced growth path with the growth rate given by (12), only now this
rate is negative, so that all trajectories decay to the origin. This situation
is depicted in Fig. 2c.

The remaining case, where (11) holds with equality, is depicted in panel
(b) of Fig. 2. In this case, the two nullclines completely overlap, and there
is a continuum of steady states along this ray. All interior trajectories
converge to some point on this ray.

As A moves past unity, the curvature of the nullclines changes: the curve
where A4 is stationary becomes convex, while the curve along which k is
stationary becomes concave. There is once again a unique interior crossing
which now represents a saddle point. If the economy is characterized by
high savings, this steady state “emerges” from the origin as A crosses unity.
This case is depicted in panel (a) of Fig. 3. If the economy is low savings,
the steady state instead “descends” from infinity, as shown in panel (b)

A, 4,
1 A.=4, 1
~ , 2
~e " »
4
!
| k. =k
\“ > ' (_T
\
(74 s
g
@ ()

FIG. 3. Phase diagram for 1> 1.
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of Fig.3. The figure is drawn assuming that A(1 —a) <1 holds. If 4 is
increased further, to (1 —a) !, the curve given by (9) becomes vertical; this
is the case studied by Shell [22]. If 4 increases further still, this curve
becomes downward sloping. In all of these cases, the interior steady state
remains a saddle point.

This collection of figures demonstrates that both high-savings and low-
savings economies have the following pattern: (i) as 4 approaches unity,
the interior steady state converges to one of the boundaries of the state
space (zero or infinity) and (ii) as A crosses unity, the interior steady state
emerges from the other boundary, with different stability properties. The
steady state at the origin also changes stability properties as A passes unity.

4.2. Bifurcation Diagrams. Another way to analyze the changes in
steady states as the parameter A is varied is to look at the bifurcation
diagram. Since the steady state levels of 4 and k are related by (4), it
makes no difference which variable we put on the vertical axis; we will use
k. Consider first the case of a high-savings economy. When 1 is less than
unity, the economy has a unique interior steady state that is locally stable
and an unstable steady state at the origin. The value of k at the interior
steady state, k*, may or may not be monotonically increasing in 4, depending

k
stable

— ~unstable

FIG. 4. Bifurcation diagram for a high-savings economy.
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on parameter values, but it certainly diverges to infinity as A goes to unity.
For A greater than unity, the origin is stable and the interior steady state,
if we look at movements along the steady state ray, is unstable. This infor-
mation is summarized in Fig. 4. For a low-savings economy, the analysis is
reversed. The interior steady state is still locally stable for low values of 4,
but it now converges to zero as A approaches unity. As A passes unity, an
unstable steady state appears from infinity. The bifurcation diagram for this
case is given in Fig. 5.

These diagrams clearly show the phenomenon described above: in both
cases the interior steady state diverges to one of the boundaries as A goes
to unity and then emerges from the other boundary. As this happens, it
exchanges stability properties with the boundary steady state. The defining
characteristic of a transcritical bifurcation is that two fixed points collide,
passing “through” each other and exchanging stability properties in the process
(see, for example, Wiggins [ 27, pp. 256-257]). Hence the event we have here
closely resembles a transcritical bifurcation, except that the interior steady state
collides with one boundary and then emerges from the other.

Suppose that we were to equate these two boundaries, that is, suppose
we were to “wrap” infinity back around so that it touches zero. The state

k

4

stable

—— =unstable

FIG. 5. Bifurcation diagram for a low-savings economy.
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O = unstable fixed point
® = stable fixed point

A< A=1 A>1

FIG. 6. The bifurcation on the circle: a high-savings economy.

space would then be a circle and the movement of the interior steady state
would be continuous on the circle. This situation is depicted in Figs. 6 and
7. Figure 6 corresponds to the high-savings economy in Fig. 4. The point
on “top” of the circle corresponds to a capital stock of zero and hence is
a steady state for every value of 4. For obvious reasons we will refer to this
as the “boundary” steady state even though all points are interior on the
circle. Increases in k correspond to clockwise motion on the circle, and as
k goes to infinity, we return to the top from the left side.

The left panel in Fig. 6 depicts the case where 4 is less than unity, so that
there is an interior steady state that attracts all trajectories except the
boundary steady state. As A1 approaches unity, the interior steady state
diverges to infinity, which is to say that it approaches the (boundary)
steady state at the top of the circle from the left. When 4 is exactly unity,
there is a unique steady state and all other trajectories experience unbounded

O = unstable fixed point
® = stable fixed point

A<l A=1 A>1

FIG. 7. The bifurcation on the circle: a low-savings economy.
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growth. The steady state is half stable, with trajectories approaching it
from the left and being repelled from it on the right. When 4 is greater than
unity, the interior steady state has continued on its path of clockwise
motion and is now unstable, while the boundary steady state has become
stable. We clearly see in this series of pictures the defining characteristic
given above for the transcritical bifurcation: two fixed points colliding and
exchanging stability properties.

For a low-savings economy, everything happens in reverse: the interior
steady state moves in the counterclockwise direction as A is increased. It
again collides with the boundary steady state, and the two exchange
stability properties. This is depicted in Fig. 7. Hence the event occurring
when A equals unity clearly conforms to the pattern of a transcritical bifur-
cation. What one would like to do next is to confirm this classification by
applying a formal bifurcation classification theorem. This task is taken up
in the next section.

5. FORMAL BIFURCATION ANALYSIS

For the formal analysis we return to using the general production
function F. We begin by looking at a special case of the model, where
technology depreciates completely every period (i.e., we have p =1). This is
perhaps not the most compelling value for the depreciation parameter on
economic grounds, but it simplifies the dynamics in a crucial way. In this
case, the dynamical system is given by

A, p1=mw(A,, k,; A)

kipr=0=p)0=1)w(d,, k; 2).
Notice that we now have A,=ok, for all periods ¢ greater than zero.
Trajectories in this system jump to the steady state ray, and then move

along the ray. This means that the system is, in effect, one dimensional. To
formalize this, note that we can rewrite the system as

kivr=0=7)1—1)wlok,, k;;2)

with 4, = ok, holding for # > 1. Using the homogeneity of w, we can rewrite
this as

kipi=(1—=y)1—=1)w(o, ;1) k;l
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Letting a(4) denote the term (1 —y)(1 —1) w(o, 1; 1), which depends only
on parameters, our dynamical system reduces to

k, . =a(i) k.

t
Our assumptions on F imply that « is twice continuously differentiable in A.

5.1. The Transformation. In order to perform the formal bifurcation
analysis, we must change coordinates so that our system is defined on a
circle and hence the bifurcation occurs in the interior of the state space.
The transformation of the state space must be done so that the dynamical
system is at least C? in the new space. The method of transformation here
consists of two steps, each of which is a strictly monotone transformation
of variables. The first step creates a linear system on the whole real line. We
define a new variable z, by

z,=1In(k,).
We then have
Zi41 =1n(kt+1)
=In(a(1))+ A In(k,)

=In(a())+ Az,.
The importance of this step is that it has eliminated the asymmetry
between zero and infinity in the original system. We now have a linear
system defined over the entire real line. The second step is to map this new
system onto the interval [ —7, 3). By equating the two endpoints, this will
give us a dynamical system on a circle with circumference n. The transfor-
mation we use is to define y, by

y,=tan"(z,).

This implies that

yt+l:tan71(zt+l)

=tan ~'(In(a(1)) + Az,)
or

Vigr=tan— l(ln(a(/h)) + Atan(y,)).
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One small problem is that tan(y,) is not defined at y,= —=n/2. However,
the limit of the right-hand side is defined, with

lim [tan~!(In(a(A)) + 4 tan(y,))] = —

T
y, = —n/2 2

Therefore we can define the transition function G(y,, 1) in the following
way

tan ~!(In(a(A)

~

+ Ztan(y,)) e<— >

YViv1=

NSRS ]
Il
|

=G(y,, 4).

This is the dynamical system on which we perform the bifurcation
analysis. We first need to establish some properties of the function G. It is
continuous, with

G(-,l):{—n 7z>_){_727:’721> for any 4

and we have

lim G(y,i)z—g and  lim G(y, 1)

n
Yo —7)2 P) 2°

For the values A=0.5 and a=1.1, the graph of G is given in Fig. 8. As
expected, G intersects the 45° line (the dotted line in the figure) at
y= —mn/2, at a unique interior steady state, and again in the limit as y
approaches 7/2. For our analysis, we need to know that the dynamical
system on the circle is at least C% The only potential problem is at the
endpoints. Since the points —7x/2 and n/2 are mapped into the same point
on the circle, we need to know that we have

lim  h(y, 2)= lim h(y,2),

y—> —n/2 y—on/2

where /1 represents each of the first- and second-order derivatives of G in
(y, A). The derivations are tedious and a summary can be found in the
appendix.
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1.57

=="05 i 5 W

FIG. 8. Graph of G(y,,0.5).

5.2. Steady States on the Circle. The system on the circle has two
steady states. The first is at y = —x/2; we will continue to refer to this as
the “boundary” steady state. The derivatives contained in the appendix
determine the stability of this steady state. From (19), we have

5G<_” i>_1
dy 2270

demonstrating that the steady state is unstable when 4 is less than unity,
stable when 4 is greater than unity, and nonhyperbolic when 4 is equal to
unity. Next, we need to analyze the “interior” steady state. This point is
given by

o= tan-1 (D)

Evaluating the first derivative at this point yields

G (g% 1y=1.
ay

Therefore the interior steady state has the opposite stability properties of
the boundary steady state. It is stable when A is less than unity and
unstable when A is greater than unity. Notice that this exactly matches the
stability properties of the interior steady state given in proposition 1. The
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interior steady state does not exist when 4 =1 holds, because it has collided
with the boundary steady state. To see this, note that

i [an-t (A {20 <)y
2

S

When the high-savings condition holds, the interior steady state converges
to the boundary steady state from the “positive” side as 4 goes to unity and
reappears on the “negative” side, having exchanged stability properties
with the boundary steady state. This process is exactly that depicted in
Fig. 6, where y = —m/2 is the top of the circle and increases in y correspond
to clockwise motion. When «a(1) <1 holds, so that we have a low-savings
economy, the direction of movement of the interior steady state is reversed.
This exactly matches what is shown in Fig. 7.

5.3. Classifying the Bifurcation. We next confirm that the event occur-
ring when A crosses unity is indeed a transcritical bifurcation. We do this
using a set of sufficient conditions for a transcritical bifurcation given by
Wiggins [27, p. 365].

CLASSIFICATION THEOREM (Wiggins). A4 one-parameter family of C? one-
dimensional maps

vy G(y, 1), yeR, AeR

having a nonhyperbolic fixed point, i.e.,

G(y*, 1%) = y* (14)

oG

S ) =1 (15)
y

undergoes a transcritical bifurcation at (y, A)=(y*, A*) if

oG

() 5 (%A =0 (16)
. 0%G
(ii) azay(y*’ A¥)#£0 (17)
and
2
(iii) G(y*,i*);éo. (18)

ay?



92 ANTINOLFIL, KEISTER, AND SHELL

In our system the bifurcation point is (y*, A*)=(—3, 1). Condition (14).
requires that this point actually be a steady state, i.c., that we have

T T
o)=L
G< 2’> 2

This clearly holds. Condition (15). requires that the steady state be non-
hyperbolic. From (19) we have

oG n
—(=Z,1]=1
0y< 2’>

and this condition is satisfied. From the other derivatives in the appendix

we have
oG 7
a/1<_2’i>=0

70 (_23)=—1
ayoi\ 2°7) 1%
so that conditions (16) and (17) are clearly satisfied at A*. The final condi-

tion, (18), requires that the second derivative of G with respect to y also
be nonzero. The expression for this derivative given by

82G< T > 2 In(a(4))
— |-z, )|=—.
oy?\ 2 22

for all values of A, and

Therefore, we have

G/ = )
ayz<—2,l>=2ln(a(l));ﬁ0 if a(l)#1,

or whenever the economy is not on the high-savings/low-savings boundary.
This establishes our main result.

THEOREM. [If
(1= =) wlo, 1;1)#1

holds, then the dynamical system defined in (13) undergoes a transcritical
bifurcation as A passes through unity.
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6. COMMENTS ON GENERALIZING THE FORMAL RESULT

The case for which we are able to provide the formal bifurcation analysis
(when technology depreciates completely every period) is special in at least
two ways. First, and most obviously, it reduces the dimension of the
dynamical system from two to one. Equally important, though, is the fact
that it delivers an exact power law for the dynamical system. This allows
the system to be mapped onto the circle in a smooth way. We now discuss
the difficulties involved in trying to extend our formal result, first to other
one-dimensional settings and then to fully two (or higher) dimensional
models.

The importance of the exact power-law relationship between k,, ; and &,
can be seen by looking at a perturbed dynamical system such as

kz+1=ak?+(1 —p)k,

with u strictly between zero and one. (This law of motion obtains, for
example, from a discrete-time Solow model with log-linear production and
savings rate a.) The bifurcation diagrams for this system are qualitatively
the same as the ones presented above. Furthermore, if our change of coor-
dinates is used to generate a dynamical system on the circle, it will be
qualitatively the same as in our power-law system. The event that occurs
when / crosses unity again has the signature properties of a transcritical
bifurcation. In performing the formal bifurcation analysis, however, a
problem arises—the system is not C? on the circle. In particular, there is
a jump discontinuity in the derivative at the point where zero and infinity
are “pasted” together. The fact that we were able to create a smooth system
on the circle is a special property of our model; in general one-dimensional
systems this is not possible. This means that the classification theorem we
appealed to cannot be used for these other models. There do exist,
however, techniques for analyzing bifurcations in nonsmooth systems
(Budd [9] gives one example). It is possible that such techniques could be
employed here, so that bifurcations such as the one just described could be
formally classified. The methods that exist to study bifurcations in non-
smooth systems are typically problem specific, however, and how they can
be adapted to economic models is an open question.

This nonsmoothness problem is even more pervasive in fully two (or
higher) dimensional systems, since such models cannot have exact power
law dynamics for both variables. If one did, it would simplify to a one-
dimensional system as in Section 5.) Hence the type of nonsmooth
methods mentioned above will be needed here as well. However, the added
dimension brings with it another problem. For our general model with
incomplete technological depreciation, the dynamics are defined on the
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nonnegative orthant of the plane. This can be mapped onto a sphere using
a combination of a logarithmic change of coordinates and a stereographic
projection. In this way, all of the points on the “boundary” of the plane are
mapped into a single point, the “top” of the sphere. Here there is the poten-
tial for worse types of nonsmoothness than a simple jump discontinuity in
the derivative. The directional derivative will likely be defined in every
direction, but it might be different in every direction. In fact, this exact
problem occurs at the boundary steady state of our general model on the
plane, and hence is likely to reappear in any transformation of the system
onto the sphere. Again, methods for analyzing bifurcations in nonsmooth
systems seem to be needed here, but higher dimensions seem to require
stronger tools because of the different types of nonsmoothness that may
occur.

In spite of these nontrivial difficulties in extending the formal result, it
seems clear from looking at diagrams that events resembling a transcritical
bifurcation occur in a broader class of endogenous growth models. If the
proper tools can be developed, we believe that extensions of our result will
be helpful in organizing the analysis of a large class of endogenous growth
models.

APPENDIX

For our analysis, we need to know that the dynamical system on the
circle is at least C2 The only potential problem is at the endpoints. Since
the points —7x/2 and 7/2 are mapped into the same point on the circle, we
need to know that

lim  h(y,2)= lim h(y,2),

y—> —n/2 y—on/2

where /1 represents each of the first- and second-order derivatives of G in
(y, 4), that is,

L 0G . oG .. 0°G . 0°G 0*G
h()/, )"):(1) 5a (11) a’ (111) N2 (IV) W’ and (V)

We will check these in order.

oG 1 +tan?y,

il )= A 0 .
3 Ve = A T ma) +atan y 2 > ®
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at the two boundary points, we have

. oG 1
B v (19)
L(;L) +tan y
oG a( i t ..
9 (v, 1) @ (i

o "1+ (Ina(2)+itan y,)*

At the two boundary points, we have

0
lim G =0.

y,— xm/2 a/’L

The second-order derivatives are all lengthy expressions, so we will only
give their values at the endpoints:

8276: 2 1In(a(1))

y li+n/2 oy? 22 ’ (iif)
0%G
| =0
yt—}Iiln/Z aiz ’ (IV)
and
0*G 1

—03 (v)

lim — L —_— .
ot Oy 0K 22

The fact that all of these derivatives are the same as y, approaches both
—n/2 and +m/2 shows that our system is, in fact, C? on the circle.
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