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1. INTRODUCTION

The overlapping-generations model' was introduced by Samuelson [17] in
1958. Samuelson’s seminal paper has several important themes.

He provides examples with nicely behaved agents, complete and costless
markets, full information, and no externalities, in which Walrasian equilibria
are not Pareto-optimal. This failure of the First Theorem of Welfare
Economics was clarified in Shell [19]. It is shown that the “double infinity”
(of consumers and commodities)}—in particular, the assumption of an
unbounded time horizon along with (dated) commodities for each
period—suffices to render the First Theorem inapplicable to the general
overlapping-generations model.

A second theme in |17] is that the limited opportunities for intertemporal
exchange are a possible cause of inoptimality. Cass and Yaari 8] study this
aspect, stressing that this source of inoptimality is not exclusive to dynamic
models.

A third theme of the Samuelson article is that paper assets (e.g., money)
created in consequence of the government’s deficit can cure—or, at least,
reduce—inoptimality. This theme has been explored in several articles,
including |6, 19, 21, 22). The tools of this research have been picked up by
macroeconomic theorists and used to address the more traditional questions
about government policy. Since the overlapping-generations model is the

* This research was supported by Grant SOC 78-06157 from the National Science Foun-
dation to the Center for Analytic Research in Economics and the Social Sciences at the
University of Pennsylvania.

! Following Samuelson, the overlapping-generations model is often loosely referred to as the
consumption-loans model. We eschew this usage, since it replaces the structural description
with a description in terms of an attribute of some of the models. In particular, the latter
description might incorrectly suggest that inefficiency in this class of models results only from
imperfections in the borrowing and lending markets.
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282 BALASKO AND SHELL

only natural model in which money is permitted to serve as a store of value
(with a positive price!), it is not surprising that it provides the most
congenial setting for a study of monetary and fiscal policies—as evidenced,
for example, by the recent research of Lucas [14] and his followers.

Our long-range research interests address all three of these themes. In the
present paper, however, we study only an overlapping-generations model
without money (or any other form of government debt). A major goal of this
article is to provide a firm foundation for our forthcoming investigation of
the monetary economy. In the sequel, we study equilibrium and optimality in
a monetary model of overlapping generations with arbitrary (active or
inactive) government deficit patterns over time.

In this article, we assume that markets in all the (dated) commodities are
perfect and that agents possess perfect foresight. Therefore, even though the
basic interest in the model stems from dynamic economics, it can also be
interpreted as an extension of the general equilibrium model (see, e.g.,
Debreu |[10] or Arrow and Hahn {1]) to a case where there are an infinite
number of commodities and an infinite number of consumers.? A crucial
feature of our model derives from the structure of generational overlap, by
which each consumer is (at least indirectly) linked to each other consumer.
Furthermore, since consumers live lives of only finite lengths, their budget
constraints can be expressed in terms of simple inner products of price and
quantities.” Hence, a system of prices can be described by an infinite
sequence of nonnegative vectors. While aggregate wealth evaluated at these
prices is possibly infinite, the individual consumer’s wealth evaluated at the
same prices is always finite.

We present our basic assumptions, definitions, and notation in Section 2.
In Section 3, we establish the existence of a competitive equilibrium price
sequence for the overlapping-generations economy. The equilibrium prices
which we find are the limits of equilibrium prices for a sequence of finite,
truncated economies.

Sections 4 and 5 provide the welfare analysis. Section 4 focuses on a
concept of weak Pareto-optimality (or, equivalently, short-run Pareto-
optimality). We show that every competitive allocation is weakly-Pareto-
optimal, and that every weakly-Pareto-optimal allocation is a competitive
allocation associated with some suitably assigned endowments. Not all

?The general-equilibrium model has been extended to allow for an infinite number of
commodities (cf., e.g., Debreu [9]) or an infinite number of consumers (cf., ¢.g., Aumann [2]).
Our analysis, however, requires the double infinity of commodities and consumers.

JIf individuals lead lifetimes of infinite length, it is mathematically natural to express
budget constraints as continuous lincar functionals, not necessarily representable as inner
products of prices and quantities; cf., e.§., Debreu [9]. The economic justification of this
maneuver is questionable (cf. Shell [19, pp. 1007-1010]) and is avoided in our study where,
Yecause of finite lifetimes, only ordinary inner-product budget constraints are needed.
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competitive allocations are Pareto-optimal. We study the relationship
between weakly-Pareto-optimal allocations and Pareto-optimal allocations in
Section 5. Our analysis is in terms of the price sequence shown to support a
weakly-Pareto-optimal ailocation. The central result of Section 5 is the
complete characterization of Pareto-optimal allocations in terms of the
supporting price sequences for economies in which consumers satisfy some
mild uniformity conditions.

2. AsSUMPTIONS, DEFINITIONS, AND NOTATION

In order to simplify notation, we begin with a seemingly special case in
which there are two-period lifetimes and the same number of commodities in
each period. Later, we proceed to establish that our results easily extend to
the very general case where lifetimes are finite, the number of commodities
available in any one period is finite, and the number of consumers alive in
any one period is finite.

For the simplified economy, in each period ¢ (1 = 1, 2,...), there is a finite
(constant) number / of completely perishable commodities. There is no
storage of commodities nor any other production process. Consumers, who
are indexed by their order of birth A =0, I,..., are either present at the
inception of the economy (in which case, they live out the balance of their
lives during period 1) or are born at the beginning of some period ¢ and live
out the whole of their lives in periods ¢ and ¢ + 1. The analysis is first carried
out for the simplest demographic pattern, i.e., each generation consists of a
single consumer indexed uniquely by his birthdate.*

Let x;* be consumption of commodity i (i = 1,..., /) in period s (s=12,..)
by consumer ¢ (1 =0, 1,...). Consumer ¢ derives utility from consuming goods
during his lifetime. His utility function can be represented as

u,x,), t=0, l,..,

where
Xo=x5=(xp"n x3")ERL for =0
and

= 1y = (! . . .
Xo= (g, xp* ) = (xf e xph XML i) € RY for t=1,2,.

“In the notation of Cass ef al. 6], we begin with the case in which there are at date t, two
age-groups: an older generation, G, ,, born in the preceding period, and a younger
generation, G,, born in the current period. Without loss in generality, we focus on the simplest
population dynamics: G, = {1} for t =0, I.....



284 BALASKO AND SHELL

When convenient, we also denote by x, and x, the respective sequences
Xo = (x,0,...,0,..)  for t=0
and
x, = (0,..., 0, x!, xi*1,0,..) for t=1,2,...

The utility functions u,(-) and u(-, ) are assumed to have strictly positive
first-order partial derivatives (i.c., to be differentiably monotonic) and to be
strictly quasiconcave (i.e., to exhibit diminishing marginal rates of
commodity substitution). Furthermore, the closure of every indifference
surface in R’ (resp. R¥) is assumed to be contained in the corresponding
strictly positive orthant R, | (resp. R%,);* cf. Debreu [11, p. 611]. Each
consumer has strictly positive endowments of the goods during his lifetime

wy = wh = (W}, ) ERY | for t=0
and
w, = (0!, w*") = @, o, of* M, it Y ERY, for t=1,2,..
When convenient, we also denote by w, and w, the respective sequences
wy = (wy, 0,..,, 0,...) for ¢t=0
and

w, = (0,.., 0, i, w{*',0,..) for t=1,2,..

Each consumer can buy and sell on both a spot market and on a one-
period futures market at perfectly foreseen prices. (This interpretation is
natural because of the dynamic nature of the problem. From the general
equilibrium viewpoint, however, it is unnecessarily restrictive. The model has
the more general interpretation that the consumer can trade in every period,
but only has tastes for, or endowments of, commodities “during his lifetime.”
In equilibrium, no pure arbitrage profits are available, so he will not gain
from trades for those periods “during which he is not alive.”)

Let p*! denote the price of commodity i (i = 1,...,[) in period ¢ (t =1, 2,...).
Denote by p' the vector (p*',..., p"')E R/, and by p the price sequence
(p'", p’....). We choose the normalization p''' =1 and thus restrict attention
to the set S of sequences of present prices, S= {p|p''' = 1}. Each consumer

3 These regularity assumptions are not essential for our proof of the existence of competitive
equilibrium. The smoothness and positive closure assumptions, however, play important roles
in our study of Pareto-optimality.
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chooses his lifetime consumption profile rationally, that is, as the solution to
the budget-constrained utility-maximization problem:

maximize uy(x})
. . for t=0,
subjectto p'-x,<p' - wy=w,

2.1)

for t=1,2,..,
subjectto p'-xj{+pt'. X' Lp' Wi+ p't - wit = w,

maximize u,(x!, x!*")

where w, is interpreted as “income” (or, more accurately, the present value
of wealth) of consumer ¢ (t =0, 1,...). Individual demand functions f, and f,
(t=1,2,..) are defined by (2.1). The range of f, or /, is always that of the
appropriate demand, x, or x,, but the domain depends on the interpretation.
For example, if demand is determined by prices p and individual incomes w,,
then we have

_/;)ZSXR_**’—#PI"_* for [:0'

(2.2)
JeSXR,, sRY, for t=1,2,...

Let x = (x,, x,,...) be a strictly positive allocation sequence. We denote by X
the set of all such sequences, i.e., X=R/, X RY xRY X ... (infinite
product). Let W=R%, be the set of strictly positive individual “income”
sequences (w,, w,,...). We shall find it convenient to denote by the same
symbols f; or f, (i) the mapping of price sequences and “income” scalars into
demand vectors as defined by the formulas in (2.2), and (ii) the mapping of
price sequences and “income” sequences into demand sequences, f;: S X
W X and f;: § X W — X, defined in the obvious way from the formulas in
(2.2), i.e., by completing demand vectors with the appropriate zeros in order
to make sequences.

2.3. DEFINITION. Let w€X be a sequence of strictly  positive
endowments. A Walrasian equilibrium associated with w € X is a sequence
of strictly positive commodity prices pE S (and associated optimal
consumption profiles x € X) satisfying the market clearing equation

Nipp-w)=Y w,.
t 1

Note that the seemingly infinite sums in Definition (2.1) are well defined
since for each coordinate there are only a finite number of nonzero terms.
The associated competitive allocation x € X consists of the lifetime
consumption profiles x, = fi(p, p- w,) for t =0, 1,... .
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2.4. DEFINITION. The allocation X = (Xg, Xyyens X0 ) € X8 Pareto-
optimal (PO) if there is 1o y = (Yos Visees Vo) € X with the property that

}_‘y,:_\_‘_x,

t [}
and

uly,)>u/x,) with at least one strict inequality for ¢ =0, l,....

2.5. DEFINITION. The allocation X = (Xg, Xy Xsr) € X IS weakly
Pareto-optimal (WPO) if there is no Y= (Vos Vysos Yerr) E X with the
property

Y= i Xty
t 1
y,=x, except for a finite number of ¢,

and

u(y,)>ux,) with at least one strict inequality for =0, 1,....

2.6. LEMMA. If x is PO, then x is also WPO.
Proof. Obvious from Definitions (2.4) and (2.5). |

2.7. DEFINITION. The allocation Xx = (Xgy Xy X;0ns) € X is short-run
Pareto-optimal (SRPO) if there are no y = (¥, ¥yens V) EX and ' 20
with the property

Yo=Y x,
t 1

V=X, for every t 2 t',
and

u(y,)>ufx,) with at least one strict inequality for r=0, L,....
2.8. LEMMA. The allocation x is SRPO jf and only if x is WPO.

Proof. Immediate from Definitions (2.5) and (2.7). |

Efficiency notions like SRPO are frequently encountered in the capital
theory literature. We shall use the fact that SRPO and WPO are equivalent
concepts, but we state our main results solely in terms of the WPO criterion.



OVERLAPPING GENERATIONS, 1 287
3. ExiSTENCE OF COMPETITIVE EQUILIBRIUM

In this section, we establish the existence of a price sequence p € S at
which supply and demand are equated for each commodity, i.e., we establish
the existence of Walrasian equilibrium (Definition 2.3). First, we truncate the
infinite economy and establish in a standard way the existence of a
Walrasian equilibrium for the finite, truncated economy. Some Walrasian
equilibrium for the full (infinite) overlapping-generations economy can be
found as the limit of the equilibria for the sequence of truncated economies,

3.1. DEFINITION. The sequence p=(p', p... o'\ p'*'..)ES is a I
equilibrium if the following equations are satisfied:

SUP P wh) + [P, PP Wi+ PP ) = W+ wi,

I P ph Pt 0l + Pt wl) + fUPL P P Wi+ P ) = o) + i,
) . . . o . . (3.2)
L php el + P wiy)

+f:(pl’ pl+|, pl . w:+ pl+l . w:+l)=w:_| +w:-

3.3. Remark. Clearly, if p=(p', p%.. P p'*'..JES isa t-equilibrium
price sequence, then so is p'=(p'", Pl pp't ) ES satisfying
p't=p* for s=l,..,t+ 1. In other words, the components pitip'ti,.. are
completely indeterminate at a f-equilibrium.

The purpose of the following lemma is to put bounds on p* which are valid
for every t-equilibrium, i.c., which are independent of t as long as s <t + 1.
Without loss of generality, we can then impose these bounds on p =1
L+ 1)

3.4. LEMMA. There are vectors a* € R' and f* € R! (s = 1, 2,...) with the
property that for every t-equilibrium p = (p', P p Pt )ES,

O<a*€ pP &P <+, 3.5)

for s=1,.,t+ 1. These bounds are independent of the truncation (.
Furthermore, if p=(p',... p..) E S is a Walrasian equilibrium (for the
infinite system (2.2)), then the bounds (3.5) hold for s =1, 2,....

Proof. The proof is by induction on consumer s=0, I,..., . Consider
first the implications of the market behavior of consumer 0. Define the
gradient grad uy(x,) € R’ and the normalized gradient

grad u,(x,)

grad, uo(x,) = auo/ax"‘ .
)
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The normalized gradient belongs to R’ , because of our regularity
assumptions on utility functions. (See, e.g., Arrow and Hahn |1, pp. 29-30
and pp. 101-104], especially Theorem 4.8). At equilibrium, the choices of
consumer O are restricted to the compact set {x, € R, , | ug(x,) > ug(w,) and
Xo S wy + W] < +o0}. The image of this compact set by the continuous
mapping X, — grad, u,(x,) is a compact subset of R’ ,. Therefore, there
exist a' € R’ and §' € R’ with the property that

0 < a' < grad, uy(x,) <B' < +0o.

Now, if p € S is a r-equilibrium with 7 > 1, then necessarily p' = grad, uy(x,).
Consider next the implications of the market behavior of consumer § =
l,..., 1. Conditions (2.1) and our regularity assumptions imply that

grad u (x5, x5*') 1
e =
s

gradn u,(x,) =

which belongs to R | is strictly positive and finite for x,ERY . At
equilibrium, the choices of consumer s are restricted to the compact set
(X, €R,, XRY 1(x) > uw,) and x, < (i, +wl o + with) <
+0o0}. Therefore, by the same argument as above, if P E S is a tequilibrium
with > s, then necessarily the vector (1/p*')(p**")E R, , belongs to a
compact set. But, by the induction hypothesis, there exist a*'€ R and
B*' € R such that 0 < a*! < p*! < ' < +00. Hence, there exist a**' €R!
and f**' € R with the property 0 < a**' g p**! < B! < +o0. The proof
by induction is complete. §

Lemma (3.4) allows us to restrict attention to a compact subset of the set
of price sequences.

3.6. DEFINITION. Let S* < S be
S*={p=(p'..., P'\..)ES|
0<a'<p'<Pf < +o0 fort=1, 2.}
where a' and § are the bounds defined in Lemma (3.4).

Next we define #/(¢) the set of r-equilibrium price sequences in S*,

3.7. DEFINITION. Let 27¢) be the set

{p € $*| p satisfies the system of Egs. (3.2)}.

By construction, {#{t)}, the sequence of equilibrium sets is nested and
decreasing; this fact is formalized in the next lemma, which is motivated by
Remark (3.3).
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3.8. LEMMA.

D)o HQ2)D- DH(U)D--.
Proof. Obvious from the definition of r-equilibrium (Definition (3.1)). 1

3.9. LEMMA. Z(t) is nonempty and compact in the product topology for
t=1,2,...

Proof. (a) Nonemptiness. Complete the system (3.2) by the equation

f:#l(pl‘ p'*'.p‘ . w:+ pul . w:ol)=w:+1_

This new equation system represents a conventional pure-exchange, general-
equilibrium system consisting of the first £+ 1 consumers, which economy
we denote by &,. In particular, each of the consumers is resource-related to
each of the other ¢ consumers. Therefore, there exists a competitive
equilibrium price vector (p',..., p'*') € R4V (see, e.g., Arrow and Hahn
{1, pp. 117-119]). Furthermore, it is obvious that p* (s = 1,..., t + 1) satisfies
the bounds specified in Definitions (3.6) and (3.7). Finally, to complete the
sequence p € #(t), assign p* (s=1¢+2,¢+ 3,..) any value which satisfies
the bounds in Definitions (3.6) and (3.7).

(b) Compactness. By Definition (3.6), $* is the (infinite) product of
the compact sets {p' € R'|a' € p' < B} for =0, 1,..., hence is compact for
the product topology by Tychonoff’s theorem (see, e.g., Bourbaki [5, I,

Sect. 9.5, Theorem 3, p. 88]). #7(t) is a closed subset of $* and hence is
compact.

3.10. ProroSITION. For the overlapping-generations economy described
in Section 2, there always exists a competitive (Walrasian) equilibrium price
sequence p € S associated with every sequence of endowments w € X.

Proof. We need to establish that the set

% = {p € S| psolves the system of (Walrasian equilibrium)
equations in Definition (2.1)}

is nonempty. Since #(00)= 2, Z¢) is included in %, it suffices to
establish that 277(o0) is nonempty. By Lemmas (3.8) and (3.9), #Z (o0) is the
intersection of a nonincreasing sequence of nonempty, compact sets and is
therefore nonempty; cf. Bourbaki [5, I, Sect. 9.1, pp. 83-84|. 1§

The assumptions in Section 2 are far stronger than are needed to establish
the existence of a Walrasian equilibrium price sequence. In the proof of
Proposition (3.10), only two ingredients are crucial: (1) The existence of a
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sequence of finite truncated economies, in which each truncated economy
has the property that every consumer is indirectly resource-related to every
other consumer. (Cf. Arrow and Hahn [1, p. 117).) (2) The aggregate
demand function for each commodity is sufficiently regular so that bounding
properties on prices (such as those in Lemma 3.4) can be deduced.® In
Proposition (3.11), we provide a generalization of Proposition (3.10). While
the hypothesis of Proposition (3.11) is rather weak, it is quite far from the
most general result directly derivable within this framework.

3.11. PrROPOSITION., Consider a pure exchange, overlapping-generations
economy, with a finite number of commodities in each period, in which
lifetimes are finite and the number of consumers alive in any period is finite
and positive. In period t (t=1,2,...), there is at least one living consumer
who will also be alive in period t + 1. Each consumer has a utility function
which is smooth, strictly-quasiconcave, and strictly increasing in the
commodities available during his lifetime. Also, the closure of every indif-
ference surface is contained in the corresponding positive orthant. Each
consumer is endowed with strictly positive and finite amounts of the
commodities available during his lifetime. Under the above hypothesis, there
exists a Walrasian equilibrium price sequence.

Proof. Under these assumptions, aggregate endowment of each (dated)
commodity is positive and finite. Therefore, the regularity of utility functions
and the structure of generational overlap allow bounds to be placed on the
components of the price sequence which are valid for each truncated
equilibrium as well as for the infinite equilibrium. The remainder of the proof
parallels that given for Proposition (3.10), where &, is replaced by &¥
(t=1*t* + 1,...), the truncated economy based on all consumers whose
death date is ¢ or earlier, and ¢* is the first death date recorded in the infinite
economy. Under the above hypothesis, for each &£, consumers are resource-
related. H

It should be re-emphasized that our regularity assumptions on utility
functions, viz., strict monotonicity, smoothness and strict quasi-concavity are
not essential for the proof of existence of competitive equilibrium. Only
indirect resource-relatedness and a mild (not necessarily uniform) bounding
property on prices are required. Our proof of existence could easily accom-
modate upper semi-continuous demand correspondences, precisely as in

¢ In an unpublished paper |15], Okuno and Zilcha have examined the question of existence
of equilibrium. They restrict attention to a model with a very particular monetary policy and
do not distinguish between monetary and nonmonetary equilibria. They also adopt a stronger
assumption of resource-relatedness than is normally used.
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Debreu [10] or Arrow and Hahn [1]. These regularity
assumptions—notably smoothness—are introduced because they play an
important role in our welfare analysis in Section 5 and because they will play
an intrinsic role in our forthcoming analysis of the topological structure of
the set of monetary and nonmonetary equilibria and the set of Pareto-
optimal allocations.

The assumption that indifference surfaces have positive closures is made
to rule out complications which could arise at the boundary of the
consumption set X. This and the assumption of strictly positive endowments
would be unnecessary if X were the entire Euclidean space, rather than its
positive orthant.

3.12. Remark. For the proof of Lemma (3.9), the equation system (3.2)
was completed in a particular way, which was sufficient for establishing the
existence of an equilibrium (Proposition (3.10)). If the method of completing
the system (3.2) is generalized to

[T VP I I I} [P | TS Y T |
fr (P,P P -w, p - W, )—zr *

where z{*'€ (0, w!*' + w!!!), then each Walrasian equilibrium
(Definition (2.3)) can be found as the limit of a truncated economy for some
positive sequence {z!*'}.

4. WELFARE ANALYSIS: WEAK PARETO-OPTIMALITY

It is fair to say that in the decade following the publication of Samuelson’s
seminal article [17], there was substantial confusion about the welfare
implications of his analysis. (See, e.g., [13].) The confusion was in part
caused by the imprecision of the criteria for optimality’ employed in [17]. It
is therefore worthwhile to take some care with the basic aspects of the
welfare analysis. The focus of this section is the WPO-criterion
(Definition (2.5)). The next section will evaluate WPO-allocations (and thus
Walrasian equilibrium allocations) in terms of the stronger PO-criterion
(Definition (2.4)).

”In our reading of [17] (see especially pp. 479-480), threc welfare concepts are implicit in
the discussion: (1) What we call weak Pareto-optimality (WPO) (or equivalently SRPO); see
Definitions (2.5) and (2.7)). Samuelson [17] refers to our WPO concept (Definition (2.5)) as
“Parcto-optimality.” (2) A Benthamite-type (or, Ramsey-type) social welfare function with a
zero rate of planner’s impatience. (3) What we call Pareto-optimality (PO) (see
Definition (2.4)). Oddly enough, criteria (1) and (2) receive the most attention in {17]. This is
consistent with Samuelson’s approach in a later paper 18] on the Phelps-Koopmans
theorem, where Samuelson seems not only to reject the PO concept for infinite programs, but
also the weaker concept of intertemporal efficiency for infinite programs.
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4.1. DEFINITION. Let x=(xg.X,,..,X,,...) € X be an allocation. The
price sequence p = (p', p’...., p'....) is said to support x if and only if, for
each 1 (¢=0, 1,..), the commodity bundle x, maximizes u,(.) subject to
P x, < w, for some sequence of incomes (wy, W,,..., W,,...) € W.

4.2. LeMMA. Every competitive allocation x € X associated with the
Walrasian equilibrium price sequence p € S and some endowment sequence
w € X is supported by p. Conversely, every allocation x € X supported by a
price sequence p€ S is a competitive allocation associated with the
Walrasian equilibrium price sequence p and some suitably assigned
endowments w € X.

Proof. (a) Let p€ S be an equilibrium price sequence associated with
the endowment sequence w = (w,, w,,..., w,,...) € X. The commodity bundle
X =f(p. p-w,) maximizes u(x,) under the constraint p.x,<p-w,.
Therefore, the competitive allocation x = (fy(p, p- w,), f,(p, P+ ®,)semss
Jp, p- w)...) is supported by the price sequence p (with the sequence of
incomes w = (Wo, Wy Wy = (P + Wo, P+ W)y P v @y}

(b) Let the sequence pE€ S support the allocation X = (Xgy X} yeees
X;5..) € X. Therefore, x,=f(p,p-x,) for t=0,1,.. Clearly, p is an
equilibrium price sequence associated with the initial endowment sequence
w = x, where x is also the competitive allocation sequence. [}

4.3. LEMMA. The allocation sequence x € X is weakly Pareto-optimal
(WPO) if and only |f there exists a price sequence p € S which supporls x.

Proof. (a) Consider the r-truncated economy &, defined by the first
{+1 consumers. It is immediate from Lemma (2.8) that X = (Xgy X yerey
X,,...) € X is WPO if and only if for each =0, I,..., (Xg» X} 4oy X,) is PO in
the truncated economy &,.

Assume that x is WPO. We must show that there is a p €S which
supports x. The proof is by induction on the truncation f. Assume that there
exists a (unique) normalized price vector (p!, p,..., p') supporting
(Xos X4 X,_,) in &,_,. We must show that there is a (unique) p'*' € R,
such that (p', p’..., p', p'*") supports (x,, X, ..., X,) in &,.

If (p', p'**') supports x,, then (p'!, p'**') = 6 grad u,(x,), where 6> 0.
Consider the reduced economy consisting only of the commodities of period
! and two consumers: consumer (— | defined by the utility function
u,_ (%2}, -), where x!-} is fixed; and Consumer ¢ defined by the utility
function u,(-, 5;*'), where %*! is fixed. The allocation (xi_,, x}) is clearly
PO in the reduced economy. We then have that p'' is colinear with
grad u (-, X;*') evaluated at x{, which, because the reduced economy is PO,
is colinear with grad u,_ (%}, -) evaluated at x/_,. But by the induction
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hypothesis, this is colinear with p’. Therefore, p' and p’! are colinear in R/,
p'' = Ap' for some A > 0. Define p**' = p’**!/A. Clearly the vector (p', pi....,
p', p'*"') supports (xg, X, ..., X,) in &, ,. The proof by induction is completed
by observing that x, is supported in &, by any p' colinear with grad uy(x,). If
we let p'€S'={p'€ER!|p""'=1} be the (unique) normalized vector
supporting x, in &, then we have defined the (unique) p € S which supports
the WPO allocation x.

(b) Let x=(x,, X,,., X,»...) be supported by a price sequence p =
(p', pi..., p'....). Clearly, x, = f,(p, p - x,). Assume that x is not WPO. Then
by Lemma (2.2), there exists y = (¥g; Vises Vo) E X with y,=x, for
t>some ¢, Y, y,=3,x, and u(y) > u,(x,) with at least one strict
inequality. Then p- y, 2 p . x, (since x,=f(p, p+ x,)) and there is strict
inequality of u,(y,) > u,(x,) for some ¢. Therefore,

t=t'-1 t=t'-1
Al

which contradicts the assumptions that }°, y, =3 ,x, and y,=x, for t=1r,
*+1,... R

4.4, PROPOSITION. Every competitive (Walrasian) allocation is weakly
Pareto-optimal. Conversely, every weakly Pareto-optimal allocation is a
competitive allocation associated with some suitably assigned endowments.

Proof. The proposition is a direct consequence of Lemmas (4.2) and

4.3). 8

5. WELFARE ANALYSIS: PARETO-OPTIMALITY

In this section, we investigate the relationship between Pareto-optimal
allocations and weakly Pareto-optimal allocations. We know that PO
allocations are WPO (Lemma (2.1)). We show that the converse is not true.®
More precisely, we characterize those WPO allocations which are PO (and,
obviously, those which are not PO). Then we show that not all WPO
allocations are PO. These conditions are stated in terms of the price
sequence known to support a WPO allocation. The application of this
section to studying the relationship between competitive allocations and PO
allocations is immediate, so that no more will be said about it.

* That the converse is false can be established by any one of a host of examples drawn from
the cxisting literature. There are regular examples (in, e.g., 8, 12, 17|} in which competitive
equilibrium allocations are not PO. By Proposition (4.4), we can interpret these as examples
of WPO allocations which are not PO.
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Looking back to Sections 3 and 4, the simplicity of the analysis of
existence of competitive equilibrium and its relationship with WPO
allocations is quite striking. Largely for convenience, we employed regularity
conditions on consumers. The only uniformity condition we used was on the
structure of generational overlap, which was imposed to ensure resource-
relatedness. It is noteworthy that while we assumed individual endowments
to be positive and finite, it was not necessary to impose uniform bounds, nor
were any uniformity assumptions imposed on utility functions. In the present
section, however, we shall employ some mild uniformity assumptions on
consumers. The assumptions will be discussed as they are introduced.

We consider a given allocation x € X. We shall need to determine whether
or not there is a sequence of feasible commodity transfers & which is Pareto-
improving on the allocation x, i.e., such that x + h is Pareto-superior to x.
These concepts are clarified by the next two definitions. '

5.1. DEFINITION.  Let x = (x,, X, ,..., X,,...) € X be a given allocation. The
sequence of commodity transfers h= (hy, h,,..., h,...) is feasible if (x + h)
belongs to X and 3", h,=0.

Note that for our model feasibility implies that h takes the form (h,, A, ...,
h,,...) where

hy=hy=—h} for =0
and
ho= (Rl B* ) = (B, —hit)  for 13> 1.

5.2. DEFINITION. We say that the sequence of commodity transfers h is
Pareto-improving upon the allocation x if 4 is feasible and ulx, +h)>u(x)
with strict inequality for at least one t, =0, I,....

Clearly, if the sequence {x,} is bounded from above and if 4 is Pareto-
improving, then h is bounded and Ak, where 1€ (0, 1), is also Pareto-
improving upon x = {x,}. The strategy in characterizing Pareto optima will
be either to construct a Pareto-improving sequence & or to show that there
does not exist such a sequence. The characterization of Pareto-optimality
will be stated in terms of the price sequence known to support a WPO
allocation.

5.3. PROPOSITION. Consider the WPO allocation x supported by p.
Assume:

(a) Property B: the sequence {x,} is bounded Jrom above;
(b) Condition P: lim inf,__ || p')| = O.
Then, x is PO.



OVERLAPPING GENERATIONS, | 29§

Okuno and Zilcha |16] have provided a result close to Proposition (5.3).
Note that (5.3) does not require the convergence of 3 , p - x, but does require
x to be bounded from above. If we have Y ,p-x, < +o0, this last
requirement is not necessary. (Proof of assertion: Assume that there is an
allocation y € X such that u,(y,)>u,(x,) with at least one inequality
(t=0,1,.)and Y, y,= T, x,. Multiplying by p yields 3", p- y,=2,p- x, <
+00 by hypothesis. Obviously, p - y, > p - x, with at least one inequality (for
t=0,1,.) by the assumption that y is Pareto-superior to x, thus
contradicting Y, p-x,=>,p - y,< +00.)

Property B can be interpreted as restricting the long-run real growth rates
of the economy to be nonpositive. Condition P can be interpreted as
implying that the long-run interest rates are positive. Proposition (5.3) is
thus in accord with results in capital theory (cf., e.g., Cass [5]): If the
commodity rates of interest exceed the real rates of growth, then SRPO
allocations are PO.

To establish Propostion (5.3), we first have to prove the next two lemmas.

5.4. LEMMA. Let h be Pareto-improving upon the WPO allocation x. If
t, denotes the smallest t (1=0,1,..) such that h,#0, then h,#0 for t=
Loy ty+ L.

Proof. Assume that there is some ¢, > , such that A, = 0. Because of the
particular structure of generational overlap, the condition 3}’ h, =0, splits
into the conditions

=4
N h=0 and N h=0.

t=1y [P

Therefore, the sequence (0,..,0,h, ..., 4,,0,..) would be feasible, and
u,(x, + h) would be no smaller than u,(x,) for t=0, l,.... Thus, (0,..,0,
ARy, Ak, ,0,...) would be Pareto-improving for 0 <4 < 1, because of the
strict quasiconcavity of utility functions. Since the sequence (0....,0,
Ah, ..., Ak, ,0,..) has only a finite number of nonzero components, this is a
contradiction to the hypothesis that x is WPO. 1

5.5. LEMMA. Let h be Pareto-improving upon the WPO allocation x
supported by the price sequence p = (p', p*..., P'....). Then, we have the
Sollowing inequalities (1 = 1, 2,...):

PSP S <Pty =—pt - <O,

the inequalities being strict for t > t,, where t, is defined in Lemma (5.4).

642/23/3 2
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Proof. First, hy=(h},0,...) and uy(x, + hy) > uy(x,) which implies that
p' - (x} + h) > p' - x} and thus p' - h} > 0. This inequality is strict if hg# 0
because of the strict quasiconcavity of uy(-).

We next prove that p'*'. hit} < p'- h! with strict inequality if A, 0.
Since u/(x,+ h) > u,(x,), we have p- (x,+ h,) 2 p- x,, hence p- h, 20, ic.,
p' ki +p*' Rt >0, and by Lemma (5.4), p'*' - hit} < p'- hi. These
inequalities are strict if h, # 0, because of the strict quasiconcavity of u,(-).
An argument by induction, aided by Lemma (5.4), completes the proof of
Lemma (5.5). R

Proof of Proposition 5.3. Assume that there is a Pareto-improving
sequence h. Consider (, defined in Lemma (5.4) so that h, #0. From
Lemma (5.5), we have that

p k< phtt Pt < p-hp=0 for 1=1,+2,1,+3,...
But, since A is bounded and lim inf,__ ||p‘|| = O by condition P, we have

lim inf |[p* - k4| =0,
t-00

which is a contradiction to Lemma (5.5). |

We next state our main welfare result, which provides a complete charac-
terization of Pareto optima.

5.6. PROPOSITION. Let x = (xg, X,y X;0..) EX be a WPO allocation
supported by the price sequence p = (p', pi..., p's...). Assume:

(a) Property C: The Gaussian curvature® at every point on consumer
r's indifference surface through x, is uniformly bounded from above;

(b) Property C': The Gaussian curvature of consumer r's indif-
Jerence surface through x, at every point y = (Ygy...s V,s.) Such that 0
YKt 4 xtt) for 1=0,1,.. and O yi<xt+xt_, for t=1,2,. is
uniformly bounded away from 0;

(c) Property G: There exist constants P and Q (independent of t)

such that
s.d

P
I(p", P+

* See Debreu |11}, especially pp. 612-613, for the definition of Gaussian curvature and its
role in demand theory; also, see Spivak |20, pp. 7-14|.

The role of some maintained uniform “curvature™ assumption in characterizations of inter-
temporal efficiency is recognized in Cass’s fundamental paper [5] and later formalized in
Benveniste's pretty paper [3]. Both [3] and |5] focus on intertemporal consumption efficiency.
Okuno and Zilcha [16] apply the Benveniste analysis to the overlapping-generations model. in
none of these three papers, however, is the Gaussian measure of curvature utilized.

0<Pg @<+
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Jors=tt+ 1;i=1,..,1,and t = 1, 2,... Furthermore, there exist constants
P’ and Q' (independent of t) such that

(N]
0<P’<T|%,-"—<Q’<+oo

Jori=1,..,l;and t=1,12,.;
(d) Property B: The sequence |x,} Is bounded from above;

(e) Property B': The sequence {x,} is bounded from below by a
strictly positive vector.

Then, x is Pareto-optimal |f and only {f

v
ST

If we exclude “kinks” in indifference surfaces, then there is obviously an
upper bound for the Gaussian curvature of a given indifference surface.
Property C adds that there is a un{form bound on the Gaussian curvature of
the respective indifference surfaces passing through x,,..., X,,... . Property C’
is a uniform strengthening of strict quasiconcavity of utility functions, ruling
out the possibility that indifference surfaces are arbitrarily close to being flat
in the neighborhood of x,. The uniform curvature Properties C and C’ are
essential for Proposition (5.6). See Cass [5, pp. 221-222). Property C is
needed for the “only if” part. Property C' is needed for the “if” part.
Examples are provided in |19] where the interest rate is identically zero (and
thus Y, 1/ p'|| diverges) and in which competitive allocations are not PO;
the examples in [19] are for the case where indifference curves are lines
(which, of course, have zero Gaussian curvature).

Property G is a condition on the gradients of utility functions needed to
avoid cases in which the steepness of indifference surfaces is either
arbitrarily large or arbitrarily close to zero; it can be taken as a uniform
strengthening of the bounds on prices provided in Lemma (3.4). Property B
restricts the long-run real growth rates in the endowments of each of the /
commodities to be nonpositive, while Property B’ restricts the long-run real
growth rates to be bounded from below by some negative number. The
importance of Property G is that it implies that for any WPO allocation,
long-run own-rates-of-interest for each of the ! commodities must be
“similar,” ie., the sequences {p"‘} and {p’'} (i,j=1,..,1) must obey
“similar” growth conditions.

Like Proposition (5.3), Proposition (5.6) is reminiscent of the results on
intertemporal efficiency pricing in the capital theory literature (cf., e.g., Cass
[S]). If the long-run interest rates are nonnegative, then Y, 1/]i p'll = +aq,
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and the allocation is PO. More generally, if long-run growth rates do not
exceed long-run interest rates, then Pareto-optimality obtains. If, on the other
hand long-run interest rates are bounded below some negative number,
Y, 1l p'l converges, and the allocation is not Pareto-optimal. More
generally, if long-run growth rates exceed long-run interest rates, then the
allocation is not Pareto-optimal.

Note that, if conditions (a) through (e) are satisfied, then Proposition (5.6)
implies Proposition (5.3): If lim inf,_ || p'll = O, then 1/|| p’|| does not tend to
zero and Y, 1/|| p'|| necessarily diverges.

The basic structur€ of the proof of Proposition (5.6) is revealed in the one-
commodity case. Therefore, the next lemmas will be stated in the case /=1,
and used to prove Proposition (5.6) for that case. The extension to arbitrary
/, which requires Property G, is provided after Lemma (5.10).

Assume [ = 1. We then find it more convenient to set —¢' = hi, so that for
feasible h, we can write

h, = (0,..., 0, —¢', &'* 1, 0,...) for t=1,2,.

Thus, ¢' can be interpreted as the amount of commodity “transferred” by
consumer ¢ to consumer f — 1. We also set

”t=pr+| _el+l_pl_el’

the present value of “transfers to” consumer ¢ minus “transfers from”
consumer f. Let x = (x,, X;,..., X,,...) be the allocation under consideration.
We also associate with the sequences {¢'} and { p} the sequence {a‘} defined
by the formula

ol ((61)2 + (8” I)I) . ((p:)z + (pl+ I)Z)I/Z
= ”' .
5.7. LEMMA. If h is Pareto-improving upon x and iff C' holds, then the
sequence {a'} is bounded from above.

Proof. By Property C’, there is a lower bound 2/p of the Gaussian
curvature at the points of the indifference curve of consumer ¢ through x,
with coordinates (x!_, + x§, x!*' + x!+1). It results from the convexity of
preferred sets and from the definition of the lower bound 2/p that any circle
of radius greater than p/2, tangent to the indifference curve at (x!, x!*'), and
with center on the line perpendicular to the tangent to the indifference curve,
lies below the indifference curve (except, of course, at x,) in the feasible
domain, i.c., the set of points with co-ordinates (x!_, + x/, x!*! + x/t1),
See Fig. (5.1). Therefore, any feasible point N which dominates the point
M = x, = (x}, x{*') lies inside this circle. We consider the circle I" of radius
p. The point N = (x] — ¢, x{*' + ¢'*") lies in the interior of I if and only if
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X"l *E"'
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'
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-
x
-

FIGURE 5.1

length MN < length MM’ where M’ denotes the second intersection point of
I with the line MN. Since MM’ = 2p sin 8, where 6, is the angle formed by
MN and the tangent at M to I', we have

(€ + (" ") < (2psin )%
Using the definition of the inner product yields
n'=ptt-ett—ptg
=sin §,((¢)? + (&' P)VH() + (V)2
Eliminating sin 8, in these two relationships, we obtain

1 1
((8')2 + (6” I)Z)I/I : ((pl)Z + (pn I)2)l/2 )

((8‘)2 + (8“ I)2)|/2 < 20’7' .

Hence

ot = LEY + ) + ()Y

2
',g . <2P,

which proves Lemma (5.5). 1§

In the next lemma it is also assumed that / = 1,

5.8. LEMMA. If there exist a positive sequence (n'} and a scalar €' such
that

(8) €'} is bounded,
(b) {a'} is bounded,
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and if Prbperlies B, B’, and C hold, then the sequence h defined by |¢'} is
Pareto-improving upon x.

Proof. By Property C, there is an upper bound 1/2p of the Gaussian
curvature on the indifference curve passing through x,. It results from the
convexity of preferred sets and from the definition of the upper bound 1/2p
that any circle of radius less than 2p, tangent to the indifference curve at
(x!, x!*1), and with center on the line perpendicular to the tangent to the
indifference curve, lies entirely above the indifference curve (except, of
course, at x,). Therefore, any point strictly inside the circle I" dominates
(from the viewpoint of consumer f) the allocation x, = (x!, x{*'). Take I' to
be the circle of radius p. The point N = (x! — ¢!, x!*' + ¢'*!) lies inside I’
(see Fig.5.2), if length MN < length MM” where M” denotes the second
intersection point of I'" with the line MN. Since MM” = 2p sin §,, where 6, is
the angle formed by MN and the tangent at M to I, this will be ensured if we
have

(€ + (e"")? < (2psin 0,)%

As before, using the definition of the inner product, »', the above condition
amounts to

a' < 2p.

These results enable us to construct a Pareto-improving sequence h. Let {n'}
and ¢! satisfy the assumptions of Lemma (5.8) and let h = (h,, h,,..., h,,...)
correspond to the sequence {¢‘}. Clearly, it results from Properties B and B’
that, if 4 is small enough, then Ah is feasible. Furthermore, a' being linear in
A can be made arbitrarily small by taking A small enough, hence smaller than

tel tel |

+E

tel
Xy

t_gt xt
X'EX

FIGURE 5.2
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2p for every t = 1, 2,.... The above results imply that Ak is then feasible and
Pareto-improving upon x.
For the next lemma, we continue to impose the restriction /=1,

5.9. LEMMA. Given the positive price sequence |p'} satisfying
Property G, there exist a positive sequence {n'} and an €' > O such that the
associated sequences {a'} and |&'} are bounded, if and only if 3", 1/p' < +oo0.

Proof. First, we show that the condition ), 1/p' < +oo implies the
existence of some positive sequence {n'} (and of an €') such that the
associated sequences (&'} and {a'| are bounded. Let us show that the
sequences which satisfy n' = 1/p' also satisfy the required properties for any
arbitrarily given &' > 0. We have

1, -1
pBif 1 (5
p P \ixa P
Convergence of 3" 1/p’ implies that 1/p'— 0, hence p'-» c0 as t— +c0. We
then have that (p' - ¢')/p'— 0 and (1/p')— O, while

-1 t

SENENE

mP o P
Consequently, &' — 0 and is, therefore, bounded. Let s,=3Y{_, 1/p,— p'€'.
Clearly, a' is less than
1 + 1
" ()

and, hence a‘ is less than

st

o+ e

1 2
si(1 +u,) (l +—> )
u,

where u, = (p'/p'*"')%. Therefore, (a‘)? is less than

s +u,) (l +;l—) =s! (uf +3u,+3 +-l—)
] t
It results from Property G that the ratio of prices u, belongs to an interval
[a,B] where a >0 and B < +o. Consequently, {u?+ 3u,+ 3+ 1/u,} is
bounded, hence {(a‘)?} and {a’} are bounded.
We must now prove the converse, namely that the boundedness of {¢‘} and
{a’} implies }_, 1/p' < +00. By definition,

p'-8’=p'-e'+(r]'+---+r1"‘).
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Hence,
1 =1
+ 0t

> L—p—,——”—

We also have that
o VP ()
a > Yy i £, gl —1 .
n p-n

Therefore, the boundedness of {a'} implies that the sequence {B"} defined by

ﬂ’= ("|+_“+”f—l)2
p ol

is bounded. The proof of Lemma (5.9) follows immediately from the next
lemma (Lemma (5.10)). 1§

5.10. LeMMA. Let {p'} and {n'} be positive sequences such that the
sequence {f'} defined by

ﬂ’_ ("l+...+"t~l)2
- poni-1

is bounded. Then, 3", 1/p' converges.

Proof. There is by hypothesis a K < +00 such that B'<Kfort=23,..
Therefore, we have

K”l-l

= <-=T -

P (i)
To establish that 3" 1/p' < +oo, it is, therefore, sufficient to show that the
sum

-1
ST S
- =ity
converges. This is obvious if Y n'< +o0. If, however, 3= 400,
convergence of 3y is established by comparison with the integral
J® (1/x?) dx, which converges. For 1 sufficiently large, the integral dominates
the sum 372,y as is illustrated in Fig. 5.3, J

Proof of Proposition (5.6). It is clear that Lemma (5.10), along with
Lemmas (5.7) and (5.8), provides a proof of Proposition (5.6) for the case
I'=1. (Note, however, that ¢' must be chosen to be sufficiently small.)
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FIGURE 5.3

Property G allows us to extend the results to the general case, including
1> 2. Pick an arbitrary commodity (say, commodity /). From Property G,
we know that there are constants P and Q’ such that

1 1 1 1 1
pr 1

—_———— —r y —

T ATk

hence 3" 1/p"! converges if and only if Y 1/||p'| converges. Assume,
therefore, that }° 1/|| p'|l < +0o and thus Y 1/p*! < +00. We are then back
to the results from the case /= 1; here we can find a Pareto-improving
sequence of transfers using only commodity i, while holding allocation of all
other commodities fixed.

Conversely, assume that there exists a (bounded) Pareto-improving
sequence & = {h,}. For consumer > 1, consider the vector A, and the price
vector (p', p'*'). These vectors define a plane in R*. This plane intersects
the indifference surface through x,, thus defining a 1-dimensional curve in
this plane. Clearly, this curve inherits the curvature Properties C and C’ of
the original indifference surface. Except for the labelling of axes, we face the
same situation as in Fig. (5.1), which was constructed for the case / = 1. This
is shown in Fig. (5.4). The circle I' has radius p (where 2/p is the lower
bound on Gaussian curvatures at x), and is tangent at x, to the curve
resulting from the intersection of the plane of Fig. (5.4) with the indifference
surface. The center of I' lies on the line perpendicular to this curve at x,.
Therefore, I lies below this curve (except, of course, at x,) in the relevant
range.

As in the one-commodity case, we define the present value of net transfers
to consumer ¢ by n'= p-h, (where n' is then positive). We have that
n°+ - +n'~'=—p'. k. Hence,

DA B0 0 4 e i,
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FIGURE 5.4

The fact that x,+ h, is preferred to x, by consumer ¢ along with our
Gaussian curvature Property C’ implies that ||h{|| < 2p sin ,, as in the case
with I = 1.

Since we have that

n'=p-h=l(p, p"* " - li(hi, —RiS DIl - sin 6,

we obtain

< a2 - 1P PO
2p

and hence

A" - Il(l:'. O
n

2p for t2>1.

Since h,=(h!{,—h%}), it follows that ||A,]|>|h{}}ll. Furthermore,
(P!, P+ V)|l is at least as large as || p**'||. Therefore, the sequence || A!%1]* -
[ p**"ll/n" is bounded. Since [[A:]| - || p'll 2 n° + --- + n'~ ", we deduce that the
sequence

g = (n°+ - +n')
o' n*

is bounded. We conclude by applying Lemma (5.10). 1

5.11. Remark. One can construct examples of allocations in economies
satisfying the hypothesis of Proposition (5.6) such that 3", 1/|| p,|l < +c0.
Hence, one can construct WPO allocations which are not PO. Begin by
picking an allocation x = {x,} satisfying Properties B and B’. Then pick a
price sequence {p’} such that }_, 1/|| p'|| converges. It is then straightforward
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to choose demand functions {f,(p, w,)} consistent with Properties C, C’, and
G such that

fop' p'-x)=xy for t=0

and
/“(pl, pt+|, pl . x:+ le . x:+l)=(x:,x:+|) for = l,2,... .

The allocation x is supported by p and is therefore WPO. But, by
construction, x is not PO.

6. CONCLUDING REMARKS

The overlapping-generations model is genuinely dynamic. It thus departs
from the basically atemporal character of most economic models in that it
reflects both the open-endedness and the unidirectional nature of time.
Therefore, the overlapping-generations approach provides a promising
framework for the analysis of intertemporal allocation and the roles of
monetary and fiscal policy. It is obvious that the present paper goes only a
short way in developing a theory rich enough to be useful in policy analysis.
Clearly, money (and other government debt), production, and private
durable assets (including capital) must be incorporated into the theory. The
structure of the set of competitive equilibria must be studied in depth.

We do not expect these extensions of the theory to be at all trivial to
develop. For one thing, rather new mathematical techniques are likely to be
required. There is a sense, however, in which these extensions are somewhat
straightforward: The basic formulations involved are closely related to those
of the currently extant general-equilibrium literature. (This relationship is
reflected in the present study by the reliance on general-equilibrium
techniques and notation.) The more difficult and subtle extensions which will
be needed for the overlapping-generations model are likely to require new
formulations, which go far beyond what is now available in the literature.
Included are questions involving expectations formation, transaction costs,
and price rigidities.'®
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