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DIFFERENTIAL GAMES AND RELATED TOPICS

ON COMPETITIVE DYNAMICAL SYSTEMS*

Karl SHELL

1. Introduction to the “Sequence Economy”’

Debreu’s beautiful little book Theory of Value probably provides the
best summary of the contemporary general equilibrium theory of the static,
competitive economy. The interpretation of this theory is based on the no-
tions of the Walrasian auctioneer and timeless contracting. In an atemporal
setting, the auctioneer calls out a price vector and agents (consumers and pro-
ducers) submit to the auctioneer their demands for goods. If markets clear
for some vector of nonnegative prices, then that price system is “settled
upon”’; exchange and production then take place in that price environment.
If markets do not clear, the auctioneer tries other price vectors until he
achieves equilibrium, where for each commodity either market excess de-
mand is zero or market excess demand is negative and the price of the com-
modity is zero.

The Walrasian paradigm is very powerful, but it has some shortcomings.
Even in the study of short-run phenomena, for which the general equilibrium
model is best suited, one must allow for the fact that in real life there is no
such auctioneering process and trading can be expected to take place at
“disequilibrium” prices.

The dynamic extension of the general equilibrium model is less satisfacto-
ry. Dated goods are introduced. Thus a model with m conventional goods and
T periods is formally equivalent to the static model with mT goods. The usual
interpretation is that the atemporal auction includes futures markets but is
held only once, no recontracting is allowed. This story is difficult to relate
to everyday economic life. Among other things, with births and deaths, not
all agents in the dynamic economy are alive at any given period.

The implicit “equilibrium dynamics” story of many models of economic
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» AHEFEY
growth is rather different from that of the Debreu model. First, there is the
technical difference caused by the infinite-horizon (7" = o) assumption. With
an infinity of dated commodites and/or an infinity of agents, certain techni-
cal difficulties arise. For one thing, it is no longer necessarily true that in the
absence of externalities competitive-equilibrium allocations are Pareto-opti-
mal allocations. (It should be noted that many of the very recent contribu-
tions to general equilibrium theory treat the infinity problem.)

The second difference between “equilibrium dynamics” and the general-
equilibrium story is more fundamental. Frank Hahn has coined the term *“se-
quence economy”’ for the model often employed in growth theory. At each
moment in the sequence economy all markets clear (including futures mar-
kets if they exist), but recontracting can take place at any future date.

I fully realize that my definitions of *“‘equilibrium dynamics™ and “se-
quence economy” are vague. This is intentional. I merely hope to set the
stage for the specific models which will follow. I have been assigned the task
of discussing competitive dynamical systems. I shall present Hahn’s basic
model of heterogeneous capital accumulation and several variations on and
special instances of that model. Based on special cases, one can make a con-
jecture about the solution to the general “‘Hahn problem”. The general
problem cannot be stated in terms of differential equations but must be
stated as a generalized dynamical system — in particular as a system of dif-
ferential correspondences.

The analysis is easily extended to include paper assets (such as money and
government bonds) as stores of value alternative to physical productive capital.
I conclude the lectures with some reflections on the Samuelson consumption-
loan paradox, transversality conditions, and other topics in the “economics of
infinity”.

2. The Quarter-Circle Technology*

I begin the study of the development of the sequence economy with the
very simple joint-production example which my colleague Christopher Caton
and I worked out. We study a one-sector, two-capital model in which a homo-
geneous output, Y, is produced by the cooperation of labor, L, machines of
the first kind, Ky, and machines of the second kind, K,. Assuming constant
returns-to-scale and denoting quantities per unit labor by lower case letters,

* This section is based on [4].
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the production relation can be written as y = f(kq, k). For ease of analysis
we assume that the production function is linear in logarithms, so

o &
2.1) y=fk1,ky)=ky "ky °,

where &) >0, @y >0,and 1 — @ — @y > 0. If we assume that all rentals are
saved, while all wages are consumed, demand for consumption per head is
given by

5 I
f-kifi—kafa=(1 -y —m)ky "ky °,

when factor markets are competitive. If the product markets are in momenta-
ry equilibrium so that demand and supply of consumption are equal,

(22) C=f—k1f1—k2f2=(1—(!1—(!2)y>0,

when ¢ is consumption per man. At every instant saving and gross investment
per man is equal to (@) + @)y =z >0.

Following the example of Samuelson, [10], we assume a “quarter-circle”
technology is available for costlessly transforming undifferentiated (gross) in-
vestment, z, into gross investment in machinery of the first kind, z;, and gross
investment in machinery of the second kind, z,. That is,

2.3) z2=2,2+2,2,
with z;, >0 and z, > 0. We choose the consumption good as numéraire. In
momentary equilibrium, the price of a unit of consumption, p,,, must equal

the price of a unit of investment, p,, since both goods are produced by the
same technology, and if py is the price of a unit of undifferentiated output,

(2.4) Py =P, =P =1,
since both ¢ and z are positive.

Under competition, profits in the conversion of undifferentiated invest-
ment into differentiated investment must be zero. Thus,

(2.5) p1zy tPyzy =P,z =2,

where p; and p, are the unit prices of the respective investment goods. Assume
that machinery of either kind depreciates at the constant proportionate rate
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u and that the labor force is growing at the constant proportionate rate n.
Then capital accumulation can be described by the equations:

(2.6) ki =2y — Ak,
and

(2.7) ky=2z,— Ak, ,
where A= u+n>0.

Momentary equilibrium. Momentary equilibrium in the present model is
always unique. That is, given endowments and prices, the output of the con-
sumption good and the two capital goods are uniquely determined. This is
easily seen because from (2.1) and (2.2), k; and k, uniquely determine y, c,
and z. Given z, p; and p,, the profit-maximizing values of z, and z, are
uniquely determined by (2.3) and

(2.8) z1/23 =py/p;y .

Equation (2.8) states that production on the quarter circle with radius z will
take place at the value of (z1,2,) at which the marginal rate of technical
transformation is equal to the price ratio. By assumption (2.3), equation (2.8)
holds for all positive but finite values of p; and p,.

Squaring both sides of (2.5) and (2.3) and combining yields

P12(1 —p12) +py2(1-py2) —2py2p,2 =0,
which can be rewritten as
(P12 4P ) (P12 +p2 —1)=0.

Ignoring the extraneous root, we have that p; and p must lie on the unit
circle, i.e.,

29 p?p?=1.

Next we turn to the equilibrium conditions in the used-machinery market.
Rentiers hold machines of the first and second kind. Expected rates of return
on the two types of machinery must be equal, else all wealth holders will at-
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tempt to specialize to the capital good with the higher rate of return. If p,¢

and p,€ are the expected rates of price change for the respective capital goods,
then the expected consumption rates of return must be equalized, or

(2.10) P1é/py tr1/Py =DEIpy +1a/py

where r; and r; are the respective rental rates on machinery. If expectations
are always ratified, p,° =py, and p,¢ = p,, then from (2.10),

(2.11) p1/P1 +f1/p1 =P2/p2 + fo/P5

since under competition rental rates are equal to marginal products, i.e.,
ry=fiandry =f,.

Balanced growth. Combining (2.3), (2.5), and (2.8) yields
(2.12) 2z =pyz and zy) =p,z.

In light of (2.9), it is legitimate to cast the analysis in terms of the price ratio
pP=p,/p;.From (2.9)

(2.13)  p;=(1+p®™ and p, =p(1+p))*.

Substituting (2.12) and (2.13) in (2.6) and (2.7) and using (2.2) gives the two
capital accumulation equations

(2.14) ki =(aq + &) y(1 +p2)% —nky
and
(2.15)  ky=pag + &) y(1 +p2)y% -k, .

Since in our model f; = o y/k; and f, = ayy/k,, asset-market-clearing equa-
tion (2.11) can be rewritten as

(2.16)  p=yV1+p% (poy/k; — ayfky),

using (2.13). ...

A balanced-growth equilibrium is then defined by k; =k =p=0.If
(k1 *,ko*,p*) is the value of (kq,k,,p) in balanced growth, then from (2.14)-
(2.16) it must solve the system
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(217 ky=p(y +a)y(1 +p)y %N,
(2.18) p= az‘kl/alkz =V a2/a1 .

Equation (2.18) shows that p* and the ratio (k; */k,*) are uniquely deter-
mined. Substituting (2.18) in (2.17) yields

(2.19)  ky=play + o) (Veylay kz)al k2.

Since 0 < a; +a, <1, the right-hand side of (2.19) is an increasing concave
function of k, with a first derivative that is infinite when k, is zero and is
zero when k is infinite. Therefore, the balanced-growth equilibrium
(ky*,ko*,p*)is uniquely determined.

Notice from (2.17) and (2.18) that if &y = a,, then p* =1 and k{ * =k, *.
In this case the marginal product f;(k; *,k,*) equals the marginal product
fo(ky*,k5*) in balanced growth. If ) > a, thenp* <1 and ky* > ky*.
But from (2.1) and (2.17)

Q
J1ky* kM (ke *, ky*) = Va—i >1,

by hypothesis. Thus, in balanced growth where a; > a,, more of the first
kind of machinery is produced than the second, but the stock of machines of
type one is not deepened sufficiently to equate marginal products.

It will be useful to note that, across steady-states (kl =0= k2) consump-
tion per man, ¢, is maximized when (k{,k,) = (k1 *,k,*). From (2.6) and
(2.7),zy =k and z, = Ak, in steady states. If  is an undetermined La-
grange multiplier, the appropriate Lagrangean form is

k™

k%2 — 2 40 [22 - N2k, Y+ K,y D))
in light of (2.3). The first-order cont}i{i;)ns are:
ayyfky = 220k, /"'f
aypfky =222 07 'l,
2z6=1,

which together yield th)é solution
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(220) kl/k2 =4 al/a2 ,

which reduces to the real equation in (2.18). Combining (2.20) with the con-
dition that k1 =0= k2, yields the same result as is achieved when p is elimi-
nated from (2.17) and (2.19) by using (2.18). This maximal-consumption re-
sult should come as no surprise. In balanced growth, the competitive alloca-
tion of investment is efficient. Furthermore, reminiscent of the usual Golden
Rule exercises, the Marxian saving hypothesis ensures that the rate of inter-
est equals the rate of growth.

Dynamic analysis. We have found that, in (k;,k,,p) phase space, there is
a unique rest point (kq*,k,*,p*), which we call balanced-growth equilibrium.
We turn now to a full dynamic analysis of the system of differential equations
(2.14)—2.16).

We can approximate (2.14)—(2.16) by its linear Taylor expansion at the
rest point, so that

—k' I Mey —1) A il F(k k *)_
aqy — Qa —
1 1 poy \/l—+—p§ 1~ %1
v e oy
(22 1) k2 = kpal 7\(pa1 — 1) ——2 (k2 —k2')
1+p
1 . A2 A2 !
L5l | =5 » L e |

| aV14p2 egp/14p2

where the 3 X 3 matrix above is evaluated at (k; *,k,*,p*). The character-
istic equation for the linear system (2.21) is then

Aoy —1)—x Apay -\/ﬁ——;

2. Apoay —1)—x —p—=—= |[=0,
(2.22) wey (poy —1) [1+p2

_p)\2 2

PA A A—X

a:ly\/1+p2 aly\/1+p2
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where x is the characteristic root and terms in (2.22) are evaluated at
(ky*,k,*,p*). Solving cubic equation (2.22) for x yields the three character-
istic roots

(2.23) x=Naytay—1), W2, —WZ.

All roots are real, two are negative and one is positive. For the system (2.14)—
(2.16) in (k ,k,,p) phase-space, there exists a two-dimensional surface along
which all trajectories tend to (k{ *, ko *, p*) as t > o. Also, the manifold of so-
lutions tending to (kK *,k,*,p*) as t > — oo is of dimensionality 1 (a curve).
Therefore, in the neighborhood of (k; *,k,*,p*) for every endowment vector,
(ky,k,), there exists one and only one price ratio, p, such that the system
tends to (ky *,ky*,p*) ast > oo

We now turn to the global analysis of the differential equation system
(2.14)—(2.16). The straightforward phase portrait for (2.14)—(2.16) must be
drawn in three-dimensional space. To avoid this complexity, we adopt a trick
used by Atkinson {1} which reduces the qualitative analysis to two dimen-
sions.

Setting k = k,/k;, we can study the development of our model economy
in the (k,p) “phase” plane of Figure 2.1. From (2.14) and (2.15), when k > 0,
k =0if and only if k = p, so k is stationary on a ray with unitary slope. From
(2.16), wheny >0, p = 0 if and only if p = ayk,/ajky = ay/ayk. Thus, p is
stationary on a unique hyperbola in (k,p)-space. The unique intersection of
the hyperbola with the ray is denoted by (k*,p*).

Notice that k and p are not in general uniquely deterrmned by kand p
alone. From (2.14)—(2.16), we see that to determine k and p given k and p
we must also know either k; or k,. Nonetheless, on the ray in Figure 2.1,

k = 0 for all values of k; and k, such that k,/ky =k = p. Similarly on the
hyperbola, p = 0, independent of the particular values of k; and k. To the
northwest of the k = 0 ray, k is rising, to the southeast k is falling. To the
northeast of the p = 0 hyperbola, p is rising, to the southwest p is falling. It
should be noted that while knowledge of k and p is not sufficient to deter-
mine the speeds of motion, kandp, Figure 2.1 will serve well enough for
qualitative analysis. Substituting k in (2.14)—(2.16) and rearranging yields

o (@) )

and
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Figure 2.1.

@25 b =(k11) [\/W (pal - “—,f)] :

In both (2.24) and (2.25) the terms in brackets are solely dependent upon the
variables k and p. The term (y/k,) depends upon k; and k, and cannot be
written merely as a function of k. The right-hand size of (2.24) gives the hori-
zontal speed of our model economy, while the right-hand side of (2.25) gives
the vertical speed. Since in a “‘resolution-of-forces” rectangle the term (y/ky)
will “cancel”, we know that from (2.24) and (2.25), k and p will uniquely
determine the direction of development, although we must also know k; or
k4 to ascertain the speed of development. (Along any trajectory in the
“phase plane” of Figure 2.1, (dk/dp) = (k/p) = ¥ (k,p).)

Some important propositions are immediate from Figure 2.1. Since for
k < k*, the separatrix (heavy curve) lies below the p = 0 hyperbola, which in
turn is asymptotic to the vertical axis, we can see that the separatrix covers
the k halfline. That is, for each k > 0, there exists a unique 0 < p <o, which
will ensure that the economy tends to the rest point (k*,p*). For all other
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assignments of p, the system (2.14)—(2.16) diverges from the steady-state
equilibrium.

It is essential to study further the development of the economy on trajec-
tories not tending to the (k*,p*)-equilibrium. From Figure 2.1, we see that
trajectories not tending to (k*,p*) ultimately enter either Region 4, where
both k and p are falling, or Region B where both k and p are rising. Consider,
for example, a trajectory in Region 4. From (2.16)

(2.26) p=+V1+p? (fi/a)) (P — ay/k)

where f; is the marginal product of the first capital good. In Region 4,
o1 p < a,/k. Therefore, in this region,

221y p<(pf; -f))<0,
sincev/ 1 +p2 > 1 forp # 0. Defining § =f1/f,,(2.27) yields that
(2.28) p<(pB-—1)f,<0.
In Region A, p is falling and since X is falling, § = a; k/a, is falling, § = a; k/a
is falling.
Next we show that, on a trajectory in Region A4, the marginal product of

the second capital good, f, is bounded from below. Since f, = a,y/k,, we
can write

a

(2.29) = .
2 kl—azkll—al—az

Since in Region 4, k <0, we need only demonstrate that there is an upper
bound to k. From equation (2.14)
. (al + (!2) klal k2a2
k= J1+p2 — Ay,

or
at+ 0y , o
. (al + (12) kl 1 2 k 2

! Jiepz M

which yields °
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(230) Ky <(ay +ap) k™1 T 2k%2 _ £k,

for p # 0. In Region A4, k is falling and since a; + a, < 1, the right-hand side
of (2.30) becomes negative for k; sufficiently large. In Region 4, k, is
bounded from above, and thus f, is bounded from below.

Therefore, from (2.28) we know that in Region A, p falls to zero in finite
time. From zero-profit condition (2.5), when p, < 0 we have that p; = 1
since z, = 0 and z; =z, i.e., investment is specialized to machinery of the
first kind. If we assume for the moment that differential equation (2.11) also
holds for non-positive prices*, then from (2.11)

I3=Pf1 —fz <—f2

when p < 0. We have shown that in Region 4 marginal product f, is bounded
from below, so that starting from Region 4,p > — o0 and k >0 as t > oo,

By symmetry, for trajectories in Region B, p becomes infinite in finite
time. Again, assuming for the moment, that differential equation (2.11) holds
everywhere, on trajectories starting in Region B, p(¢) has a pole at finite ¢;
to the right of the pole, p is negative, and p > 0 with k > o0 as f > oo,

Since all “errant” trajectories (i.e., trajectories not tending to balanced
growth) enter either Region A or Region B, we know that on such “errant”
trajectories in finite time p = 0 or p = eo. The development of the price ratio,
p, is summarized in Figure 2.2. For given initial relative capital intensity, k),
there exists exactly one initial price ratio, p, such that the system (2.14)—
(2.16) develops to (k*,p¥*). This unique price trajectory is shown by the
heavy curve in Figure 2.2. For smaller initial price ratios (see, for example,
the light curve in Figure 2.2), p becomes zero in finite time and tends to
minus infinity as ¢ = <. For initial price ratios greater than the unique as-
signment tending to balanced growth (see, for example, the dashed curve in
Figure 2.2), p(¢) rises to a pole at some finite date, then ultimately tends to
zero as t — o,

If, on the other hand, capital goods are freely disposable, the differential
equation system (2.14)—(2.16) holds only for finite and positive p. Consider,
for example, an “errant” trajectory in Region 4. In finite time, p = 0. There-
fore, by (2.13), in finite time p; = 1 and p, = 0. At this point asset-market-
clearing equation (2.11) can be written as

* Essentially assuming non-disposability of capital goods.



460 Karl SHELL

Figure 2.2.

(231 Py +f1=Da/py *+f2/P, -

Because of free disposability, (p5/p,) = 0 when p, = 0. Since f, > 0, the
right-hand side of (2.31) must be + <. But, unless p; is discontinuous and
thus frustrates the most acute adaptive expectations (short-run perfect fore-
sight), asset-market-clearing equation (2.31) will not hold. Then, the second
capital good will have an infinite rate of return while the first capital good
bears a finite rate of return: All asset-holders will desire to specialize to capital
of the second kind; the capital goods market does not clear.

What forces are there in capitalism that prevent the economy from follow-
ing “errant” trajectories? Walrasian (i.e., essentially atemporal) futures mar-
kets extending indefinitely into the future ensure that the economy will be
stable — that is, ensure that it will develop to (k*,p*) independent of the ini-
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tial capital intensity, kg, since the initial competitive price ratio, p(, will be a
function of kg, lying on the heavy curve in Figure 2.1. The Walrasian auc-
tioneer rejects all price ratios but the unique ratio, pg(kg), since all other
price ratios imply that the spot capital goods market will not clear at some
(finite) future date.

On the other hand, if there are no markets for selling and renting machi-
nery, then the economy is stable since there are no capital gains. It is further-
more true (although I do not show it here) that if we assume that capitalists
possess static expectations, i.e.,p1¢ = 0=p,¢, then development always
tends to the balanced-growth equilibrium (k; *,k,*,p*).

3. Heterogeneous Capital Accumulation when Momentary
Equilibrium is not Unique T

In the previous section, we studied a model in which the production possi-
bility frontier (PPF) in (c, z1, z;) space is sufficiently curved to ensure unique-
ness of momentary equilibrium. Thus, our dynamical system could be written
as a system of ordinary differential equations. If, however, the PPF is flat, mo-
mentary equilibrium is not unique. The analysis must then be couched in
terms of a system of differential correspondences. In a particular model due
to Joseph Stiglitz and me, such an analysis has been carried out. We use no
new general theorems from the theory of differential correspondences, but
observe that our system can be represented almost everywhere by a Lipschit-
zian system of differential equations. The analysis follows from “piecing”
together the various Lipschitzian regions.

We use as before the Cobb-Douglas production function

G1)  y=k %2 =1k, k),

but assume instead that along the PPF consumption, investment goods of the
first kind, and investment goods of the second kind are perfect substitutes

(3.2) y=ctzytzy,

where ¢ >0,z 20, and z, > 0. Again assume that all wages are consumed
and all rentals are saved, so that in momentary equilibrium

t This section is based on my work with Stiglitz [12].
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3.3) c=(l-a; —ay)y.

The production supply prices of the three goods are identical. Since con-
sumption is always positive, its market price must be no less than the market
price of the more expensive investment good. Since investment is always po-
sitive, the price of consumption cannot exceed the price of the more expen-
sive good. That is, in momentary equilibrium

(3.4) max(py,py) =P =1,

if consumption is the numeéraire.
If both capital goods depreciate at the same proportionate rate, then our
dynamical system can be written as
ky =2y~ Ney =0(ay +ap)y — MKy,
3.5 .
kz =Zy— )\kz =(1 —0)(&1 +a2)y - )\kz ,

where ¢ is the upper-semicontinuous correspondence defined by

=] ifp2<p1
o{ €[0,1] ifpy=p,
=0 ifpy>py .

I now turn to the question of momentary equilibrium in the used-machi-
nery market. If expectations about capital gains are ratified, then in equili-
brium the rate-of-return on machinery types must be equalized, i.e.,

py fi by f
(3_6) .__1. +.-—1 =p—2.,+_2 .
Pr Pr P P

Balanced growth. In the steady-state, p1 = 0=pj;hence from (3.6), f; = f5.
Also, ky =0 = k,; hence from (3.5), f; =f = A since py =p, = 1. Since along
f1=1,

lim f} =90 and limf; =0,
k1—>0 kl—boo
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the solution (k *,k,*) to the system f; = a; f/k; =f5 = ayf/k, = X is unique-
ly determined.

Dynamic analysis. Define the three regimes by:
Regime 1. p, <p; =1, only capital good 1 is produced (o = 1).
Regime II. 1 =p, >p,, only capital good 2 is produced (o = 0).
Regime III. p; =p, = 1, 0 is indeterminate.

The differential correspondences (3.5) and (3.6) reduce to (using 3.4):

Regime 1 Regime 11 Regime 111
k.1=1r—>\k'1 k.1=—>\k1 I'c1=01r—>\k1
k'2=—>\k2 k2=n—>\k2 ’-C2=(1—0)1r—>\k2
151=0 1-71 =p1f, -1 l.71=P+#"f1
pr=p2f1 - 1> p, =0 Pr=ptu—,y

where profits per capita 7 = (a; + a)y.

Although this is a system of four differential correspondences ink{, k5,
Py, and p,, our simple assumptions about production and demand for con-
sumption allow us to make a complete dynamic analysis of the system in
(kq,k,) phase space. In Figure 3.1 I have drawn the ray OA along which k; =
kyay/ay (ie., along which f; =f,). Above OA, f, > f}; below OA, f1 > f,.

In Regime I, k; = 0 along the curve denoted in Figure 3.1 by OB which is
the locus of points such that

1
[(al + az)kzaz} 1- o
e e :
Differentiating yields
dk; d2k,
(—1?) >0 and (—2‘) <0.
2 fy=0 dky* fy=0
o=1 o=1

Similarly for Regime II we can describe the locus of points such that Iéz =0,
and this curve is denoted in Figure 3.1 by the curve OC.
Thus, Figure 3.1 is divided into six basic regions: A; which lies to the right
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Figure 3.1.

of the k; (vertical axis and above OA, OB, and OC; 4, which lies above OA
and below OB; 45 which lies above OC and below OA and OB; 4 4 which lies
above the k, (horizontal) axis and below OC and OB; 4 5 which lies above
OB and below OC; A4 which lies below OA and above OB and OC. The solid
arrows indicate the direction of development in the respective regions when

= 1 (Regime I). The dashed arrows indicate the direction of development
when 0 = 0 (Regime II).

So far, we have ignored the behavior of prices. We recall that in Regime I,
P42/P2 =f1 — f5/p,. If the economy is in Regime I and above OA (i.e., f, >
f1), we know that f; <f,/p, since p; > p,. Thus, in this case p, falls and as
long as the economy is above OA it cannot switch to Regime II. It continues
to specialize investment in the capital good with the lower marginal product
— a clear instance of the Keynesian disparity between social and private re-
turns due to capital gains. Similarly, if the economy is in Regime II and be-
low OA, as long as it is below OA it cannot switch to Regime 1.
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We are now ready to put all this information to use for a full dynamic analy-
sis. Consider, for example, an economy which begins initially in A5. If the
economy begins with p; > p, (i.e., in Regime I), it must remain in Regime I,
so that the economy moves towards the curve OB, crosses it, and then moves
towards the origin.

If initially p, > p; and initially the economy is in 4,, it moves towards
OA, but since py/py =f3 — f1/py and f; <f3,if p; is sufficiently large
(> f1/11), py is rising. It is possible then that, before the economy gets to OA,
P becomes equal to p, (= 1). But since f] <f,, p, must begin to fall, and we
switch to Regime 1. From then on the story follows as before. Altematively,
the economy can cross the ray OA with p, greater than p. The story for
the economy in Regime Il in A 5 is analogous to that of the economy in Re-
gime I in A,. The economy moves to OC, crosses it and proceeds to the ori-
gin.

One important case remains: The economy begins in A, withp, >p,, but
P; =Dp, at exactly the moment that f] =f,. The economy is then in Regime
III in which momentary equilibrium is not unique. There is a unique alloca-
tion ¢* which will enable the economy to move along the ray OA to the
steady-state solution; we require k/k, to equal the slope of OA

oy o*m — Nk,
a (1—dm-2Ak,’
or
o)
0<g*= <l1.
al + a2

If o deviates from o* for more than an infinitesimal length of time, clearly
f1 will no longer equal f,. If, for instance, 0 < 0*, k, becomes slightly greater
than ayk, /ey, ie., fl becomes greater than f,. Our price differential equation,
for Regime III, is p2 - pl =f1 — f, > 0. Hence p; decreases relative to p,

(= 1), and the economy moves into Regime II. From then on, the story is
familiar.

But in the model as presented thus far there is no mechanism with only
short-run perfect foresight by which o can be maintained at o*.

The dynamic behavior for the economy with initial endowments in other
regions can be analyzed in a similar manner. For each initial assignment of the
endowment vector (kq,k,), there is one and only one assignment of initial
prices (pq, D) that allows the economy to proceed to long-run balanced
growth. We have shown that, if we assign ¢ = 0* in Regime 111, the unique bal-
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anced growth equilibrium is a saddlepoint in the (ky,k,D1,D3) phase-space.
So far, there is no mechanism endogenous to the model which ensures that
initial prices will be chosen so as to allow for long-run balanced growth. Paths
not tending toward balanced growth tend to the origin, and even along paths
which allow for long-run balanced growth there is no mechanism to ensure
that o = 0* in Regime III.

Moreover, along paths not tending to balanced growth, the price of one of
the two capital goods goes to zero in finite time. To see this, consider once
again the economy above OA (f; > f7) but in Regime 1. Defining § = f/f5
yields

Py =(pyB - 1)f,<0.

Observe that in this case § is declining through time. This is because § is a con-
stant along every ray through the origin (where 8 decreases as the slope of the
ray increases), and the path of development cuts every ray from the right.
Also in this case, f, is increasing through time since

dlogf, oym
ar =(1-q —az))\+k—l =0.

Therefore, p, is falling at a rate faster than a constant absolute rate, thus for
all paths not leading to long-run balanced growth, the price of the capital good
with the higher marginal product goes to zero in finite time.

As before, paths not tending to balanced growth cannot be competitive
equilibrium paths at every instant.

Sensitivity to assumptions about PPF. The shaded triangle in Figure 3.2 re-
presents the Shell-Stiglitz technology. The production frontier is given by
z) +z, =z and the associated price system obeys the law max (p1,p;) = 1.
The shaded quarter circle in Figure 3.3 represents the production set em-
ployed in the analysis of Caton-Shell. The price system for the “quarter-circle”
technology obeys the lawp12 +p22 =1.

We can also consider another familiar geometric form to the production
set, the ““square technology”. The shaded area in Figure 3.4 represents the
production set defined by max(zy, z5) <z. For 0 <p < e, production is non-
specialized with z; =z = z,. The zero-profit condition, pyz + P52, =z, then
yields that the associated price system must follow the lawp; +py = 1.

Even in the extreme case of the ‘“‘square technology’” the basic results carry
over. Letting p = p,/p, , yields for this case,
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Figure 3.2: The “Triangular Technology” Fig. 3.3: The “Quarter-Circle” Technol-
of Shell-Stiglitz. ogy of Caton-Shell.
Z4
z
z2
z

Figure 3.4: The “Square Technology”.

=1 .
P = i+p and p2—]+p .

Therefore, market-clearing equation (2.11) can be written as
p=(1+p)(pfi-f2).
Assume that the two capital-labor ratios are equal to their unique long-run

equilibrium values, kq = kq* and k, = kp*, but that p <p*,ie.,p <fH/f;.
In this case,
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13<Pf1 —f2<0,

where f; and f, remain at their equilibrium values. Therefore, p is falling at
a rate faster than a constant absolute rate and must become zero in finite
time. Thus, for three intrinsically different assumptions about technology,
the two main qualitative properties of the competitive dynamical system are
maintained.

4. The General Problem*
We have seen the persistent recurrence of some basic themes in several dy-
namical models of the capitalist economy. Analysis of a model with more
general assumptions (especially about technology) is called for. As a start, one

might study the model put forward by Hahn.** In Hahn’s model, there is one
consumption good, m capital goods, and m + 1 sectors:

¢ =f0®%Y, .., kQ)
zy = fLG&L, kD)
Z-m = fm(k'ln, ...,k';:) .

when all variables are measured in intensive form. Full-employment requires

m m
Z‘I,-k’}=k,- fori=1,...,mand21f=1-
=0 °

Capital accumulation is given by

ki=zi—)\ki i=1,...m.
Ifpy, ..., p,, are the respective consumption prices of the m capital goods,

then competition implies that

* The material in this section is related to two contributions of Frank Hahn (6,7].
** This model is general in that there are arbitrarily many capital goods and sectors, but
does not allow for joint-production as in the quarter-ircle technology.
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af/ok)=p;(d ﬂ'/ak;i) for ij=1,...m.
Rates of return are equalized when
pilp; + 3f13k; = pylp; + 3fok]

fori,j=1,...,m. The consumption function (all wages consumed, all rentals
saved) closes the model. If the production functions £ 0(+), f1(*), ..., f™(*)
satisfy Cobb-Douglas-like conditions, it is easy to show that there exists a
unique balanced-growth equilibrium (& *, ..., k,,*, p1 *, ..., Py *). The full
dynamic analysis is substantially more difficult.

As Hahn shows, unless restrictive assumptions are made about technology,
momentary equilibrium is not necessarily unique. Let k be the m-vector of
capital-labor ratios, p be the m-vector of capital goods prices in terms of con-
sumption. In general, the dynamical system of the Hahn model can be written
as

*.p) e (k,p),

where (+) is an upper-semicontinuous correspondence in 2m arguments. As
such, the analysis cannot be cast in terms of the theory of differential equa-
tions, but we must instead turn to the general theory of dynamical systems.
See Bhatia and Szeg6 [2] for a general view of this new mathematical field.
See also the recent study of Cellina [5], which places special emphasis on the
dynamical systems defined by upper-semicontinuous differential corres-
pondences.

In order to avoid the problem of dynamical systems which cannot be
written as single-valued differential equation systems, we can, like Kurz [9],
begin with the production surface instead of with production functions.

Even so, the full dynamic analysis seems to be hard to come by. Nonetheless,
in this case, we are definite about the result for which we are searching.

I conjecture that, for the Hahn model with uniqueness of momentary equi-
librium, the unique balanced-growth equilibrium (k*,p*) is a saddlepoint in
the 2m-dimensional (k, p) space. In particular, the manifold of trajectories
. tending to (k*, p¥) is of m dimensions and “covers” the positive half k-hyper-
plane. I further conjecture that trajectories not tending to (k*, p*) will in
finite time be revealed to be disequilibrium paths along which asset markets
do not clear at every instant.
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5. Remarks on the Inverse-Optimum Problem

Recently Hahn [8] and Kurz [9] have investigated a problem which bears
on the analysis of competitive models of heterogeneous capital accumulation.
Assume that technology is of the sort described in the previous section, but
that the central planner chooses a consumption program to maximize

o0

f U)edtadt,
0

where U() is some concave utility function and § = 0 is the pure subjective
rate of time discount. If momentary equilibrium is always unique (i.e., the
production possibility frontier is never flat), then for a consumption program
to be optimal there must exist m socially imputed prices (py, ..., pp,) =p that
satisfy Euler’s system of 2m first-order differential equations (k,p) = ¢ (k, p).

The so-called inverse-optimum problem is: For the competitive system de-
scribed in section 4, does there exist U(*) and & such that the Euler differen-
tial equations from the above planning problem,

(k,p) = o(k, p)

“mimic” the differential equations from the short-run-perfect-foresight com-
petitive enterprise economy? The attractiveness of this technique stems from
the fact that there are added conditions *“closing” the planning model. These
transversality conditions,

limp,et=0, for i=1,.,m,
t—> oo

when combined with the inherited capital-labor ratios, give 2m boundary con-
ditions to “close” the 2m first-order differential equation system. While these
transversality conditions* do not apply when § = 0, similar boundary condi-
tions can be found by comparing the optimal trajectory to any other feasible
trajectory .**

* See Shell {11].
** The sufficiency proof for the one-sector model appears in Cass [3]. This proof is
easily extended to higher dimensions if the utility function and the production func-
tions are concave.
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I would like to argue that the inverse-optimum argument may be some-
what misleading. Even if an Euler system can be found to “mimic” the com-
petitive system, what one really wants to look for are the forces that “close”
the model of the enterprise economy. We want to know how the capitalist
system avoids “errant” trajectories. We already know, by definition, that an
optimally controlled economy avoids inefficiency. [It should also be noted
that the inverse-optimum problem is not an extension of the dynamic theory
of revealed preference. The revealed-preference exercise would be to infer
U(*) and 6 by observing how optimal consumption programs vary with
changes in technological possibilities. ]

One important by-product of the inverse-optimum problem is an intensive
study of the 2m Euler equations, (k,p) = ¢(k,p). For example, Kurz shows
that a stationary (k*, p*) to the Euler equations is either unstable or is a
saddlepoint. If the production functions are strictly concave and if U() is
strictly concave with hm U'(c) = o, then not only is (k*, p*) umque but also
an optimal tra]ectory, it exists, tends to (k*,p*) and is itself unique .*

Thus assuming the existence of an optimal program, we establish that the
unique equilibrium (k*, p*) is a saddlepoint. That is, in (k, p) phase space,
there is an m-dimensional manifold of trajectories tending to (k*, p*). If this
manifold were of higher dimensionality then after assignment of the initial
endowment vector, kg, there would be extra degrees of freedom, refuting the
fact that the optimal trajectory is unique. If the dimensionality of this mani-
fold were less than m, then after assignment of k the system would be over-
determined, denying the existence of an optimal trajectory. Similarly, exis-
tence of an optimal trajectory implies that this m-dimensional manifold covers
the positive k-hyperplane.

6. Paper Assets: Government Debt and another
Saving Hypothesis**
Again, we take consumption as the numéraire so that
W=pk +pBB+CG ,
where B (for bonds) is the nominal stock of government debt and p is the

* All these assertions are proved by a simple extension of the 2-dimensional proofs of
Cass to 2m dimensions.
** The analysis of this section is from Shell-Sidrauski-Stiglitz [13].
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consumption price of a bond. W is consumption value of wealth, X is capital
stock and p is the price of capital, which in the one-sector model is equal to
unity when production is not completely specialized. If CG denotes apprecia-
tion in the consumption value of assets, then

CG =pk +pgB.

Assume that the nominal rate of interest on government bonds is zero. (In-
deed, the reader may think of this non-interest-bearing debt as “money” in an
economy in which there are no transactions nor liquidity preference demands
for money.) Then, for the asset market to be in momentary equilibrium it is
required that both assets yield the same rate of return, i.e.,

p , max(l,p)f’ P8

p p Pg

f' is the marginal product of capital. The above equation states that both as-
sets must have the same rental plus price appreciation per consumption unit.
If both goods are produced, then the market price of capital must equal the
market price of output which in turn must equal the market price of con-
sumption,i.e.,p=1.letd = B/B be the increase in the nominal supply of
bonds and b = pgB/L be the consumption value of the per capita stock of
bonds. Then if we assume that the consumption value of the community’s
savings (change in the value of wealth) is a constant fraction s of the consump-
tion value of Individual Purchasing Power* (output plus the change in the
value of wealth),

kfk =sf(k)k — (1 —s) [0 +(Pp/pp)) bk — n.

Since we are only considering the case where both goods are produced p =1,
we have that

\ f' =I33/PB

and therefore

* Since government expenditures are equal to zero, the rate of increase in the outstanding
stock of bonds is equal to the government budget deficit which in turn equals transfers
minus taxes. Thus, perceived income or Individual Purchasing Power is Y=pK+ iJBB +
pgB + max(1, p)Q. If both goods are produced, then p =1 and p=0.
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Figure 6.1.

kfk =sf @)k — (1 —5) [6 +f' () (b/k) —n .
Logarithmic time differentiation yields
b=[f'(k)+6 —n]b,
from the definition of b.
We analyze the dynamic behavior of the above system assuming that the

government pursues a policy of a constant rate of expansion of the nominal
supply of bonds, i.e., the case when 0 is a given constant. b = 0 if and only if

fl(k)y=n-86.
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If the production function is neoclassical and satisfies the Inada conditions,
then for n > 0, there exists a unique value k* of the capital-labor ratio that
yi€lds a stationary for b # 0, i.e.,

[(k*)=n-0>0.

This is indicated in the phase diagram of Figure 6.1. For k > k*, b is decreas-
ing, for k <k*, b is increasing. Setting the left-hand side of the k equation
equal to zero and substituting k* for k shows that the stationary solution
(b*, k*) to the differential equations is unique and that b* is given by

p* = sf(k*) — nk* ‘
(1—29)n

Ifb=0, k=0if sf(k) = nk. Therefore, there exists a second nontrivial bal-
anced growth equilibrium which is denoted in Figure 6.1 by the pomt
(0, k**), where sf(k**) = nk**. It should be noted that b* = Z0ask* S Sk**.

In what follows, it is assumed that the production functlon 1 Q) and the
parameters n and @ are such that b* is positive. Setting k=0, implicit differ-
entiation yields

(4_1;) _ 1=9)[6+f'®)
db)io " STE —n—(Q1—5)bf "’

which is unsigned, although under our assumptions the k = 0 locus intersects
the b = locus exactly once. From Figure 6.1, we see that to the right of the
k=0 curve, k is decreasing; to the left of the k = 0 curve, k is increasing, Thus,
the equilibrium (b*, k*) is a saddlepoint. That is, given initial endowments

K (0), L(0), B(0) there exists only one initial assignment of the price of bonds
pp(0) that will lead the economy to the non-trivial balanced growth state
with bonds, (b*, k*). As in the models of Cagan, Sidrauski, Hahn and Shell
and Stiglitz, there is nothing in the model so far presented to ensure that this
unique initial price be “chosen’ by the economy. The Solow zero bond
equilibrium (0, £**) is, on the other hand, locally stable.

Paths not converging to the (b*, k*) equilibrium either (a) converge to the
Solow (0, k**) balanced growth equilibrium or (b) in finite time have such
large capital gains that real investment goes to zero. In Figure 6.1, we have
indicated by a dashed curve the locus of points along which all of output is
consumed while p = 1. To the right of the dashed curve p must be less than
unity. Along the dashed curve
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b= sf(k)
(1-9)[0+f'(®)]

and

db sf'(k) sf()f" (k)

dk (A-90+S'B] 1 —g[6+fK)2

for0<k<k*or920.

Consider a trajectory crossing the dashed line from the left with p = 1. The as-
set market clearing equation is pg/pg = (f'/p) + (p/p) and therefore the
savings-investment equation yields

5 = PL6AIA —9b) — 6] —f"
(Pk/b) + 1 '

With p < 1, k/k = —n < 0 and in finite time k < k* so that in finite time
(f'Ip)+8 —n>f'+0-n>0.

Since (b/b)=0 — n + (f'Ip) + (P/p), 51—(—’;}:@—) < 0.Sop < 1 falls faster than
at a constant absolute rate, and thus the price of capital goes to zero in finite
time.

But if capital is freely disposable when p =0,p 2 0. Since f’ >0, the rate
of return on capital is then infinite. Remember that asset market clearance
requires that

(®/p) +(f'/p)=Pplprg -

Sowith p =0and pg > 0, p and pg must be discontinuous and expectations
about price changes must be frustrated.

The long-run equilibrium (b*, k*) is a saddlepoint. This is a property that
the government-debt model shares with any competitive model with more than
one asset and an asset market clearing equation consistent with the hypothesis
that individuals instantaneously adjust their expectations about price changes.
There is an important difference between the growth model with government
debt and the heterogeneous capital goods models. In the heterogeneous capi-
tal goods models, on g/l paths not tending to balanced growth, expectations
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about price changes are frustrated in finite time. In the model with govern-
ment debt, expectations are not frustrated on paths tending to the k-axis.
This is because we assumed that the own rate of interest on bonds is zero. In
the heterogeneous capital goods model given initial endowments, one and
only one assignment of initial prices is consistent with non-disappointment
of expectations; in the government debt model, many (but not all) initial
price assignments are consistent with non-disappointment of expectations.

Even when there is no increase in the nominal supply of bonds, i.e., when
0 = 0, in the government-debt economy the inclusion of asset appreciation
implies that the long-run equilibrium capital-labor ratio will be less than in
the corresponding no-bond economy.
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