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Economics during the fifties and sixties was marked by a substantial
resurgence of interest in the theory of capital. While the advances during
this period were very impressive, there was also an uneveness in the
development of the subject. One-good models were studied in detail,
as were many-good models of production-maximal growth and many-good
models of consumption-optimal growth for the special case in which
there is no social impatience. When treating heterogeneous capital, the
literatures on decentralized or descriptive growth and consumption-
optimal growth with positive time discounting were dominated by special
cases and examples.

Reliance on examples and special cases proved to have some unfortunate
consequences. The Battle of the Two Cambridges, ostensibly an argument
over approaches to modeling distribution and accumulation, often
seemed to focus on the robustness (or lack of robustness) of certain
“fundamental” properties of the one-sector model and other worked-out
examples when extended to more general heterogeneous-capital models.
Furthermore, in large part because growth theory appeared to be an
enterprise based only on proliferating special cases, the attention of the
young able minds in the profession turned elsewhere, for example, to the—
at least seemingly —more evenly-developed general equilibrium tradition.

This is a shame. Intertemporal allocation and its relationship with the
wealth of societies is one of the most important problems in our discipline.
Growth models are natural vehicles for the study of what is called
“temporary equilibrium.” Dynamic models of multi-asset accumulation
provide the theoretically most satisfactory environment for modeling the
macroeconomics of income determination, employment, and inflation.

The papers in this volume can be thought of as attempts at providing
some unification of the theory of heterogeneous capital. The major
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topic, although by no means the only one, which we investigate here
is the stability of long-run steady-state equilibrium in models of
heterogeneous capital accumulation. However, the basic techniques used
in our investigations have wide application to economic dynamics in all its
manifestations. This follows from the observation that the economic
growth models which we treat each belong to a class of general inter-
temporal economic models which is essentially representable by what we
call a Hamiltonian dynamical system.

The static technology of our growth models can in general be described
by an instantaneous technology set, T, with feasible production satisfying

(Cr Z, —k’ '—I)E TC {(C, _k’ _1): (C, k’ 1) = 0}’

where ¢ denotes the vector of consumption-goods outputs, z the vector
of net investment-goods outputs, k the vector of capital-goods inputs,
and / the vector of primary-goods inputs. There is an alternative represen-
tation of static technological opportunities that is more congenial to
dynamic analysis, i.e., the representation of the technology by its
Hamiltonian function.

Let p be the vector of consumption-goods prices and ¢ the vector of
investment-goods prices. Define the Hamiltonian function,

H(p, q,k,1) = sup {pc' + 47 (¢', 2, —k, —D) € T},

H is typically defined on the nonnegative orthant {(p, ¢,k,/): (p, q,k,1) =0},
and is precisely interpreted as the maximized value of net national
product at output prices (p, g) given input endowments (k, /).

If the set T is closed, convex, and permits free disposal of outputs, then
technology is also completely characterized by a (unique) continuous
Hamiltonian function which is convex and linear homogeneous in output
prices (p, g), and concave in input stocks (k, /). For each such T-represen-
tation, there is a unique H-representation of technology and, conversely,
for each such H-representation there is a unique 7-representation of
technology. While we focus on macroeconomic dynamics, the Hamiltonian
function is of more general usefulness. Thus, in his paper in this volume,
relating properties of the set T to properties of the function H(p, g, k, 1),
Lau quite properly refers to the Hamiltonian function as the “restricted
profit function.”

Lau studies the case where technology can be described by production
functions. For the case in which the production functions are twice
differentiable, Lau develops identities linking the Hessians of the
production function with those of the Hamiltonian (or restricted-profit)
function. Lau also analyzes some special cases in which increasing returns
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to scale are allowed. For these cases, the Hamiltonian function may not
be concave but is quasiconcave in the input stocks (k, /).

Representation of static technology by the Hamiltonian function allows
us to describe all the growth models in this volume as Hamiltonian
dynamical systems. In continuous time, ¢ € [0, ), the system follows the
laws of motion

k(1) € 8,H(p(t), q(t), k(2), 1),
§(6) € —BuH(p(t), q(0), k1), 1))

where k(¢) and q(¢) are time derivatives of k(t) and gq(t), respectively;
9,H and 9, H are respectively the subdifferentials (or generalized gradients)
with respect to g and k. The first correspondence in (HDS) follows from the
definition of net investment since it is equivalent to the equation k(t) = z(¢).
The second correspondence in (HDS) is somewhat more subtle and can be
rewritten (employing static duality theory) as ¢(¢) + r{t) = 0, where r(z)
is the vector of competitive capital-goods rental rates. Thus, the second
line in (HDS) states that the return to asset holders (including rentals and
capital gains) are equal across capital goods. If there is (short-run) perfect
foresight about price changes, this is the asset-market-clearing equation
that follows from a simple arbitrage argument for competitive economies.
The existence of prices (p(t), q(t)) satisfying (HDS) also follows from the
necessary conditions in the optimal and maximal growth problems.

For discrete time, t = 0, 1,..., the Hamiltonian dynamical system can be
represented by

(HDS)

kiwn€ke - 0,H(p,, qu, ki s 1),
Ges1 € G — OxH(Prir s Guar s Kesa » lia)-

Line one of (HDS) follows from the definition of net investment, since it
is equivalent to k,,;, = k, 4 z,. Line two is the (short-run) perfect-foresight,
competitive, asset-market-clearing equation, since it is equivalent to
qis1 — g1+ 1 = 0, where r,,, is the vector of capital-goods rentals in
period t + 1. (HDS) can also be derived from the discrete-time necessary
conditions in optimal and maximal growth problems.

From (HDS) and (HDS)', we see that the properties of static technology
as characterized by the Hamiltonian function will be basic to the dynamic
analysis of competitive and optimizing economic dynamical systems. So
far, as can be seen in (HDS) or (HDSY)’, the development of consumption
goods prices, p(t) or p,, and of primary factors, /(¢) or /,, has been left as
exogenous to the model.

The Hamiltonian dynamical system is said to be autonomous if H
depends on time solely through g and k. The system would be autonomous

(HDS)'
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if, for example, p and / are constant through time, i.e.,, p(t) = p and
It)=1 or pp=p and I, = l. Autonomous Hamiltonian dynamical
systems have special structure that has been exploited in the mathematics
and physics literature. (For references, see {8, 10, 19]).

Let (g* k*) be a rest point to the autonomous version of the
Hamiltonian dynamical system so that

0 € aGH(ﬁ) q*1 k*1 1)1
0 € akH(ﬁ’ q*1 k*1 1)'

Of course, (g*, k*) is a rest point for the autonomous version of (HDS) if
and only if it is a rest point for the parallel autonomous version of (HDSY'.
Assume further that H is quadratic in (g, k) so that the (HDS) is a system
of linear differential equations and (HDSY is a system of linear difference
equations. In this case, a theorem of Poincaré tells us that if A is
a root to the characteristic equation for the autonomous version of the
system (HDS) at (g*, k*) then —A is also a root. For the autonomous
version of (HDSY’, the analogous theorem tells us that if A is a characteristic
root, so also is 1/A.

The Poincaré theorem, although extremely simple, is suggestive of deep
fundamental results. If, for example, in the continuous-time case we could
rule out A’s with zero real parts (Re A # 0), then we would have established
a saddlepoint result for the autonomous version of the linear Hamiltonian
dynamical system: In (g, k)-phase space, the dimension of the manifold of
(forward) solutions tending to (g* k*) as ¢t — -+ oo is equal to the
dimension of the manifold of (backward) solutions tending to (g*, k*) as
¢ - — oo, and each manifold is equal in dimension to half the dimension
of the phase space. '

Since this “‘saddlepoint property” and related properties turn out to
be of basic interest in dynamic economic analyses, a natural question is:
Are there interesting restrictions that can be imposed on the Hamiltonian
function (i.e., on technology) such that the general (nonlinear) autonomous
Hamiltonian dynamical system will possess the saddlepoint property
(or related propertie$) ? Rockafellar {12], in a paper motivated by problems
of economic growth (see [18]), established the saddlepoint property of the
autonomous version of (HDS) for cases in which H is strictly concave in k
and strictly convex in g. Rockafellar goes on to consider the (HDS) as
derived from an intertemporal optimization model which can be inter-
preted as the problem of consumption-optimal growth with zero
discounting. Here c(r) is interpreted as the (scalar) current instantaneous
utility at time 7. Because of zero-discounting, the (scalar) price of “utility”
p(t) must be constant. I(t) is also considered to be a constant scalar.
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Global stability is established for the optimal trajectory: Given initial
capital stocks k(0) = k,, lim,., k(t) = k*. Rockafellar’s stability result
had been foreshadowed, in one form or other, in the earlier literature on
maximal growth and optimal growth. For continuous-time versions, see,
e.g., [15, 16). For discrete-time versions, see, e.g., [3, 9, 11].

Consider next the problem of consumption-optimal growth with
positive (constant) rate of time discount, p > 0. Again, ¢(¢) or ¢, must be
interpreted as the (scalar) instantaneous utility at time ¢. Assume, for
simplicity, a constant scalar fixed factor, /() = 1 or /; = 1. Because of
discounting, —p(¢)/p(t) = p or —(p: — p:1)/p: = p. In this case, (HDS)
and (HDS)' are no longer autonomous and further analysis is required.
(HDS) can now be rewritten as

%k € 8oH(Q, k),

PHDS
Qe —8.H(Q, k) + pQ ( )

where Q = g/p is the vector of current capital-goods prices and H(Q, k) =
H(1, q/p, k, 1) is the current value Hamiltonian. The above system can be
thought of as a perturbation (by the term pQ) of a Hamiltonian dynamical
system. In discrete time, the perturbed Hamiltonian dynamical system is
kepr € ke + 0H(Q: , k),
Q1€ Oy — 0H(Qesr s kera) + Qs

Let (Q*, k*) be a steady state, or rest point to (PHDS) and (PHDS)'. Then

(PHDSY

0 € aOH(Q*’ k*),
0 —3,H(Q* k*) + pQ*.

One can ask the question: Do the properties of models based on (HDS)
and (HDSY, such as the stability of optimal economic growth, carry over
to models based on the perturbed systems, (PHDS) and (PHDS)’, for the
case of p positive ? The simple answer is, of course, ‘‘no,” as Kurz’s local
analysis [6] shows. Two approaches to modifying this question have been
studied: (1) Papers such as that by Samuelson [16] and José Scheinkman’s
contribution in this volume take technology as fixed and investigate
whether or not global stability properties of the optimal growth model
are preserved as the discount rate p is changed from zero to a small
positive number. (2) The approach taken by the contributions in this
volume by Cass and Shell, Rockafellar, and Brock and Scheinkman can
be thought of as generalizations of the Samuelson—-Scheinkman approach.
Conditions are sought on the geometry of the Hamiltonian function (i.e.,
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on static technology) that suffice to preserve under (not necessarily small)
perturbation the basic properties of the Hamiltonian dynamical system.

Scheinkman’s paper treats local and global stability in a discrete-time,
optimal growth model with an indirect, current, instantaneous utility
function which is discounted at some small rate p > 0. His model therefore
satisfies (PHDS)’ although he does not work directly with the Hamiltonian
formalism. A critical assumption is that linearization of the Euler equations
in the neighborhood of the “optimal steady state” possesses no character-
istic roots with | A] == 1. Using Radner’s bounded-value loss technique,
a turnpike property is established for p > 0 sufficiently small.
Scheinkman’s proof is in two steps. First, an ingenious argument shows
that optimal paths “visit”” neighborhoods of the ‘“modified optimal
steady state,” (Q@* k*). Second, local stability follows directly from his
assumption about characteristic roots.

The contribution by Cass and Shell treats optimal growth and decentral-
ized or descriptive growth models in both continuous and discrete time
as applications of Hamiltonian dynamics. They review the problem of
optimal growth with zero discounting and show that a steepness condition
on the Hamiltonian function (a condition weaker than Rockafellar’s [12]
strict convexity—concavity of the Hamiltonian) suffices to insure uniqueness
of the steady-state capital vector, k*. Furthermore, a uniform strength-
ening of the steepness condition insures global stability of k* and can be
thought of as a generalization of Radner’s assumption of bounded value-
loss. This approach relies crucially on the property that (g* k*) is a
saddlepoint of the Hamiltonian function H(l, ¢, k, 1).

In the optimal-growth model with discount rate p # 0, the rest point
(@* k*) is not a saddlepoint of H(Q, k). Therefore, the Cass-Shell
steepness condition must be modified by a term dependent on p. The
modified steepness condition establishes the uniqueness of k*. A uniform
strengthening of the steepness condition insures global stability of k* for
the continuous-time, optimal growth model. Because of different effects
of “interest compounding,” a different steepness condition is required to
establish stability in the discrete-time, optimal growth model.

While optimal growth with time-discounting yields a very simple
perturbation of a Hamiltonian dynamical system, there are other perturbed
Hamiltonian dynamical systems that arise in economic theory. Cass and
Shell discuss the general problem of decentralized growth with instan-
taneously adjusted expectations about price changes. In its general form,
the model allows for the interpretation of competitive growth with
utility-maximizing agents. However, in such a model the form of the
perturbation from Hamiltonian dynamics can be very subtle. The formal
analysis in the Cass—Shell paper is thus restricted to the continuous-time
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version of the model in which demand for consumption is Marxian. It is
shown that if in addition to the strengthened steepness assumption from
zero-discount optimal growth, the Hamiltonian is such that a *‘capital-
intensity”’ condition is satisfied, then decentralized growth in the Marxian
decentralized model is stable.

In his first contribution to this volume, Rockafellar studies the basic
mathematics of the problem which arises in continuous-time, optimal
growth with positive discounting. His paper is thus a generalization of his
earlier work [12], where his results follow from the strict convexity—
concavity of the Hamiltonian function. In the present paper, he relies on a
strengthened convexity—concavity: The Hamiltonian function, H(Q, k),
is assumed to be o-concave in k and B-convex in Q witha > 0, 8 > 0, and
4aff > p% This convexity—concavity hypothesis is substantially stronger
than the related Cass—-Shell steepness condition (because Rockafellar’s
hypothesis ignores cross effects between Q and k), but Rockafellar goes
substantially beyond the Cass-Shell paper in the range of resuits
established for this model. In addition to local and global stability results,
Rockafellar establishes the existence of solutions to optimizing programs
satisfying (PHDS). He shows directly that the saddlepoint property holds
when his convexity—concavity hypothesis is satisfied: The dimension of the
manifold of solutions to (PHDS) tending to (Q*, k*) as t — + oo is equal
to the dimension of the manifold of solutions to (PHDS) tending to
(Q* k*) as t - —oo. Each manifold has dimension equal to half the
dimension of the (Q, k) phase space. Rockafellar goes on to develop
deep results on intertemporal duality, which have important bearing
on the economic theory of the asymptotic behavior of (Q(z), k(2)).

Gaines’ paper in this volume is a study of the existence of solutions
to the full dynamical system arising in the time-discounted, optimal
growth problem. He follows the Cass-Shell formulation and appends to
(PHDS) appropriate nonnegativity conditions and boundary conditions,
an initial capital-stock endowment condition and a transversality
condition. The full system is thus

ke doH(Q, k),

Qe —8,H(Q, k) + pQ,

o) =0,

k(t) >0, (FPHDS)
k(0) = ko >0,

Jim Q1) (1) = 0.




8 CASS AND SHELL

Gaines assumes only that H is convex in Q and concave in k, a much
weaker assumption than Rockafellar’s curvature assumption, but his
methods require exploitation of other structural features of the
Hamiltonian function. In the spirit of the Cass-Shell paper, he assumes
(1) the existence of a stationary point (Q*, k*), (2) limitation of feasible
output by primary factors, (3) productivity of technology, (4) bounded
rate of depreciation, and (5) free disposal in allocation. From these
conditions, a priori bounds are developed for solutions to a finite-time
problem associated with (FPHDS). The proof of existence relies on a
continuation principle from the theory of fixed points for multivalued
mappings in infinite-dimensional spaces.

Both the Cass—-Shell and Rockafellar papers in this volume make heavy
analytic use of monotonicity properties of the Lyapunov function
V = (Q — 0%)(k — k*) in studying optimal growth (as did, for example,
the Samuelson paper [16]). The contribution to this volume by Brock and
Scheinkman also investigates stability of optimal growth in continuous-
time models and develops ““local” properties of the Hamiltonian function
that insure monotonicity of ¥ or some alternative Lyapunov function,
and thus insure stability of optimal growth for bounded trajectories.
They assume throughout that the Hamiltonian function is twice-
continuously differentiable. Much of their analysis is based on what they
call the “curvature matrix”

oo “ral.

where Hg, is the matrix of cross partial derivatives with respect to current
prices and H,, is the matrix of cross partial derivatives with respect to
capital stocks.

Brock and Scheinkman show that if the quadratic (Q, k) C(Q, k) is
positive except when (Q, k) = 0, then every bounded trajectory satisfying
(PHDS) converges to a rest point. Their result is obtained by using the
Lyapunov function Qk. In their paper, it is also shown that if
(Q— 09k +(k—k¥Q=0=>(Q— 0%k —kNC(Q — 0%k —k*) >0
and if the matrix C evaluated at (Q*, k*) is positive definite, then every
bounded trajectory satisfying (PHDS) converges to (Q*, k*). The last
conditions imply the Cass-Shell steepness condition, and thus insure that
the Lyapunov function ¥V = (Q — Q*)(k — k*) is monotonically in-
creasing for trajectories from (PHDS).

By convexity—concavity of H, the matrices Hyo and — Hy;, are positive
semidefinite. Let « be the smallest eigenvalue of Hyo and B be the smallest
eigenvalue of —H,, . For the special case of twice continuous differen-
tiability, the Rockafellar curvature condition is that 4a8 > p?, which
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insures the positive definiteness of the matrix C. While the matrix C,
when it is calculable, does provide a measure of “curvature” of H, it does
not allow for the more general interpretation of Hamiltonian steepness
since information about the interaction terms between the Q’s and the ks,
representable for the differentiable case by the matrix of cross partials
Hyg, , are ignored in the C matrix.

In his second contribution to this volume (and our final paper),
Rockafellar offers an (apparently weaker) alternative to the Cass-Shell
steepness condition. With the Rockafellar growth condition, which is
very much like the steepness condition, trajectories satisfying (PHDS) and
the transversality condition lim,,, (Q(t) — Q*)(k(¢t) — k*) = 0 are
shown to converge to (Q*, k*).

The present volume has been in planning and preparation for more time
than we would like to admit. Extensive (and often intense) communication
among the authors was stimulated by two fruitful conferences—one at the
Minary Center, Squam Lake, New Hampshire, the other at the University
of Pennsylvania, Philadelphia. We are grateful to the Mathematical Social
Science Board for its generous and understanding support of these
opportunities for scholarly interaction.

While the topics treated here have mostly to do with the theory of
economic growth, in particular, with existence and stability of macro-
economic growth, we hope you will be able to read between the lines and
appreciate the potential usefulness to economic theory of what we call the
Hamiltonian approach to economic dynamics.
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