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1. Introduction and Summary.

Businessmen are responsible for making economic decisions in the face of
uncertainty. Some of this uncertainty is the result of uncertainty about
economic fundamentals -— tastes, endowments, and production possibilities.
The weather, for example, affects the economy through its influence on crop
yields and through its influence on the final demand for umbrellas and swim-
suits. This is the type of uncertainty, uncertainty transmitted to the
economy through uncertainty about the fundamental parameters of the economy,
which is modelled by conventional general-equilibrium theory.

There is another, significant source of uncertainty which businessmen
actually face. This 1is market uncertainty, uncertainty generated within the
economy itself, uncertainty about the economic outcomes (such as prices) given
the fundamental parameters. Businessmen wonder whether the economy will be
healthy or unhealthy, whether consumers' confidence will be high or low,
whether credit will be loose or tight, whether the dollar will be strong or
weak, whether potential rivals will hold back or enter, whether prices for
their products will be high or low, whether prices for their factors will be
low or high, and so‘forth. It seems to us that most businessmen quite
properly worry more about the uncertainty of the outcome of the market process
than they do about the uncertainty of the fundamental parameters.l/

The formal modelling of market uncertainty has until recently lagged far
behind the modelling of uncertainty which is transmitted to the economy
through uncertainty about its fundamental parameters. The recent work on so-
called "Sunspot Equilibrium” introduced by Cass and Shell (reported in Shell
[17] and Cass and Shell [6]) is meant to advance our understanding of market
uncertainty. We now know that, in rational-expectations models, the

competitive-equilibrium allocation of resources can be random, even if the
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economic fundamentals are immune from random disturbances.

The present paper represents an extension of the analysis of market
uncertainty to economies in which competition 1is imperfect. The scope of the
effects of market uncertainty is richer and of greater policy interest in the
noncompetitive environment. In this environment, economic actors are
uncertain as to whether markets will be thick (with many trades taking place)
or thin (with few trades taking place), or even whether these markets will be
open or closed. In attempting an assessment of market thickness, an economic
actor must judge the confidence of other economic actors. A wide range of
such beliefs is rational (i.e., self-justifying). If, for example, demand in
a particular market (or overall) is weak, then in response supply is weak,
which in turn justifies (establishes the rationality of) the weak demand.

We build on the familiar price-formation model of Shapley and Shubik (ef.
Shubik [18], Shapley and Shubik [16], and Shapley [15]). We use this
particular type of model as a stage for our analysis because by now it is very
well-known and substantially elaborated 2/. Our basic analysis could have been
based on any one of several alternative general-equilibrium formulations of
imperfect competition, e.g., the Cournot-Nash version used by Heller in [9].

The (certainty) Market Game is introduced in Section 2. All money is
inside money; there is no government debt. Players do not face liquidity or
credit constraints. The autarkic allocation is always an equilibrium
outcome. There is a wide range of equilibrium outcomes in which each of the
commodity markets 1is open.

In Section 3, the Market Game is modified to allow extrinsic uncertainty
to play a role in the allocation of resources. We refer to the extrinsic
random variable as “"sunspot activity”, since it has no effect on economic

fundamentals, including tastes and endowments. The spot commodity markets are



S

the same as in Section 2, but there are also securities for transferring
{ncome across states of nature. We refer to the modified game as the
Securities Game. Our securities markets are analogous to those put forward by
Arrow [1]. The Securities Game can also be thought of as a noncompetitive
variant of the sunspot model of Cass and Shell [6], although here no exogenous
restrictions are placed on market participation.

The equilibria of the Market Game reappear as Nonsunspot Equilibria to
the Securities Game. We show that, in addition, there are always Sunspot
Equilibria to the Securities Game. For some of the Sunspot Equilibria, the
securities market is closed; for some, the securities market is open but
inactive (no net trades); and for others, the securities market is active.
Some Sunspot Equilibrium allocations to the Securities Game are Correlated
Equilibrium allocations to the Market Game (in the sense of Aumann [2,31);
others are not.

In Section 4, we analyze the large economy, which is the limit of the
replicated Securities Game. In the 1limit economy, the market power of
i{ndividual consumers vanishes; the economy is competitive but with the
possibility that some markets are closed. There are many rational-
expectations equilibria in the 1imit economy, some of which are Sunspot

Competitive Equilibria; the rest are Nonsunspot Competitive Equilibria.

2. Pure certainty: The Market Game.

There are &+1 goods: & commodities (or consumption goods), indexed by
1 =1,.00,24 and J = 1,...,%, and money. There are neither taxes mnor
transfers, so all money is "{nside money”, representing the private debt of the
consumers. There are n consumers (or traders), indexed by h = 1,...,n

and k=1,...,n. Consumer h is endowed with a positive amount of commodity
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(wh,...,wh,...,wh),

for i =1,...,8. If we denote by Wy the endowment vector

then we have wy € Hﬁ;_ for h=1,...,n.

i,

There are ¢ trading posts. For each commodity, there is a single
trading post on which the commodity is exchanged for money. Consumer h
supplies a nonnegative quantity of commodity i, qi, at trading post 1.

He also supplies a nonnegative quantity of money, bi, at trading post 1.

We say that qi is his offer (of commodity 1) and that b; is his (money)
1 i L
bid (for commodity 1). Let bh = (bh,...,bh,...,bh) and

i 2

q = (q;,...,qh,...,qh) denote (respectively) his bids and his offers.

Offers must be made in terms of the physical commodities. Hence, offers
i

cannot exceed endowments, i.e., we have qi < Wy for 1 =1,...,2. The

strategy set S, of consumer h 1is then given by

_ L

The trading process 1is simple. The total amount of commodity 1 which
k=n
is offered, Z qi, is allocated to consumers in proportion to their shares
k=1
of the bids for commodity 1. Consumer h's share of the bids at post 1 is

k=n
(b; / ) bi). Thus, the gross receipts of commodity {1 for consumer h are
k=1

1 —
k=n 1 k=1 k
L b
k=1

for i=1,...,2 and h=1,...,n. If all bids at post 1 are zero, the
1,k g
ratio (bh /3 bk) is equal to 0/0 and would appear to be
k=1
indeterminate. We assume, however, that if there are no bids on post i all

offers on this post are "lost™, i.e., no commodity is delivered. Thus, we
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take the fraction (bi / i) to be zero if there are no positive bids at

I o~

k
post 1.

At trading post 1, the money from bids, z bt, is allocated to
consumers in proportion to their offers of commodity 1. Consumer h's share
k=n
of the offers at post 1 1is (qh /3 qi) Thus the gross money recelpts on
k=1

post 1 for consumer h are

9y kEn bi
kg“ Eas k
k=1 k

for 1 =1,¢e.,2 and h =1,...,n. If all offers of commodity 1 are zero,
k=n

the ratio (qi / Z qi) is equal to 0/0. We assume that if there are no
k=1

offers on post 1, all money bids on the post are "lost”. Thus, we take the
k=n

fraction (qh / ) qk) to be zero if there are no positive offers on post 1.
k=1

Consumers do not face liquidity constraints, i.e., constraints which
restrict their debt issuance on any given market or proper subset of
markets. Each consumer does face a single overall budget comstraint, which he
must meet or be punished. He is required to finance his bids (for

commodities) by his offers (of commodities). The budget constraint for

consumer h 1is

=L
(2.1) R 2 by 2 2 b
j=1 k=1
for h=1,...,n. The right-hand side of Inequality (2.1) is the sum of the

dollars delivered by h in the form of bids to the trading posts. The left-

hand side is the sum of the dollars delivered to h from the trading posts in

payment for his commodity offers. The consumer is punished if he issues more



money debt than he collects.ij

lLet x; denote the consumption of commodity i by consumer h, and let

X = (xt,...,x;,...,xé) be his consumption vector. Assume that consumer k

chooses the strategy (b ) € Hﬁ} for k= 1,...,n; then the consumption

kI

of consumer h is given by

i
b k=n
x_:‘ - w:; - q:'l + E:n'h"' I of  1f (2.1) s satisfied, and
i k=1
)
(2.2) T
x% = 0 if (2.1) 1is not satisfied

for 1 = l,e.e,2 and h = 1,...,0 Failure to meet budget constraint (2.1)
leads to confiscation of all of the consumer's goods.ﬁj

The consumption set of consumer h {is the nonnegative orthant
{xh | X, € Dﬁ }. His utility function, uy, is strictly increasing, smooth,
and strictly concave on the strictly positive orthant Kﬁ+. Also, the
closure in nf of each indifference surface from E§+ is contained in

H@ . (This last assumption allows us to avoid some pesky boundary

H-
solutions.) The boundary of the consumption set, Gmi \ E¢+), is also the
indifference surface of least utility, so that (1) if we have
X € (IRi \ IR2++) and vy € (IR_%_ \ IR_%_'_), then we also have
- - ) I}
uh(xh) = uh(yh) uh(O), and (i1) if we have x, € (H&_\ E&+) and
h € n§4ﬁ then we also have uh(yh) > uh(xh) = uh(O).

We have specified the strategy sets Sh’ the outcomes Xy (through

Equation (2.2)), and the payoffs uh(xh) for the Market Game T. We adopt

the standard concept of Nash Equilibrium (NE).

Let Oy = (bh’qh) be a strategy in Sy. Define the set S by

S = S1 X, . eX Sh X, 4% Sn < (Hﬁ})n. Consider the strategles O =



(01,...,0h,...,0n) = ((bl’ql)""’(bh’qh)"°"(bn’qn)) € S, (o|oﬂ) =
t 5 = vt

(e O 2O Oy oo s 0%) = ((Bpap)aeeen(By 00, )0 (bphap),

(bh+1’qh+1)""’(bn’qn)) € S, and Oy = ((bl’ql)""’(bh—l’qh~l)’

Hl’qml),oot,(bn,qn)) € S1 XooeoX Sh—l x Sh+1 X see X Sn C (mf.i)n.l. From

Equation (2.2), we see that xﬁ is a function of the b's and q's, so that

(b

the outcome can be written as a function of the strategies ¢, namely xh(c).

2.3 Definition. A Nash Equilibrium strategy to the Market Game T is a

¢ € § with the property

u (x, (0)) = max {uh(xh(olct'l))}
cﬁ € Sh

for h=1,...,n. The corresponding NE allocation is x(o) =

(x,(9),000,%, (0), 000 ,x (0)) € nﬁ“.

We next establish that consumer h's optimal response oh to the
(equilibrium or disequilibrium) strategies of others is "individually

rational”.

2.4, Lemma. let % be consumer h's best response to the strategies LR

in the market game T, i.e.,

(x,(0)) = max {u (x (olo})}.
Yh ' ol'e s Yh w0 h

Then, we have

Uy (e () 2wy G ST 2



Proof: If consumer h selects the trivial strategy = (bﬁ,qé) = (0,0),

]
%

then we have xh(0|cg) = Hence, if %y is the best response to O _p» it

e
follows that uh(xh(c)) > uh(xh(o|c')) = uh(mh). I

This shows that in equilibrium no consumer is punished, since we have
uh(xh) > uh(wh) > uh(O), thus justifying the logic behind Equation (2.2).
We next show that there is always a very simple NE for the market game

' Later, we show that there are also other NE for T.

2.5, lemma. Let o = (01,...,Gh,...,on) be the trivial vector defined by

O = (bpsay

The associated NE allocation x(o) = (xl(o),...,xh(c),...,xn(o)) is defined

) = (0,0) for h=1,...,m. Then o0 1is a NE strategy for T,

by xh(c) =uy for h=1,...,n.

Proof: Obvious. ]

It 1s well known that autarkic NE can be trivially exhibited in this type
of market game. Autarkic NE will play an important role in our analysis of
Sunspot Nash Equilibria (cf. Section 3 of this paper). They also represent an
extreme example of a general phenomenon, which 1s readily explained by this
model. Nash market games do not exhibit the same degree of coordination of
plans which is present in Walrasian models. In Nash models, supplies can be
limited by an insufficiency of aggregate demands. Here supplies are zero
because demands are zero., The zero supplies in turn justify the zero
demands. The circle is closed. We shall elaborate on this important aspect
of the model later.

In the autarkic NE, there are no bids and no offers. All markets are



closed. We shall study existence of NE in which markets are open. We need

definitions of an open (and a closed) market.

2.6. Definition. let o0 = ((bl’ql)""’(bh’qh)"'°’(bn’qn)) be a NE vector
of strategies in the Market Game T. We say that market j 1is closed (resp.
k=n j k=n
open) if ) bk = 0 (resp. | bi > 0).
k=1 k=1

2.7. Llemma. let O = ((bl’ql)"°"(bh’qh)”"’(bn’qn)) be a NE vector of

strategies in the Market Game TI. Market j 1is closed (resp. open) if and

k=n j k=n 3
only if ) q = 0 (resp. | L > 0).
k=1 k=1
Proof: If | bk = 0, then it follows from the definition of NE and the
k=1
monotonicity of utility functions that qj =0 for h=1,...,0.

h

0 for h=1,.c.,n.

k=n . .
Furthermore, if 2 qi = 0, then it follows that bg
k=1

.

We see immediately how NE are affected by beliefs about markets. If
people believe that market j 1s closed, it will be closed. 1t is a rational
self-fulfilling belief.

Next we justify a normalization for the vector of bids, b € nﬁ?.

2.8. Lemma. If it is not the case that all markets are closed, we can
without loss in generality, restrict the vector of bids b to be in the unit

simplex, i.e., we have Ej Zk bi =1 or, simply, b€ A,

Proof: From Definition (2.6) and Lemma (2.7) and the fact that some market is

open, we have Ej Ek bi > 0. From Equation (2.2), we have that x% is
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homogeneous of degree zero in b. Hence, without loss of generality, we can

impose the restriction b € Aln. -

Since Zk qt is measured in units of commodity 1 1t serves as a good
measure of "market thickness”. When Zk qt is zero, market 1 1is closed.
When zk qt is small relative to Zk wi, we are tempted to say that market
i 1is thin. For larger values of Xk qt, on the order of zk wi , We are

tempted to say that market 1 1is thick.

What beliefs about market "thickness" are self-justifying? We have
already seen that if consumers believe a market to be closed, their beliefs
are justified. In order to further pursue the analysis of market thickness,
we next consider Of fer—-Constrained Market Games and Bid-Constrained Market
Games. We begin with definitions of the strategy sets for these games.

2.9. Definition. (1) Fix q = ﬁh € E§+, where we have 0 < aé < wi for

= a = 2 =- -
1=1,...,2. Let 5, (q.) {(b, ,q,) | b€ R, and q q,} be the offer

constrained strategy set for consumer h. Let s(q) = Sl(al) XeooX Sh(ih)

- - _ (= = - 2 )
X, . oX Sn(qn)’ where q = (ql,...,qh,...,qn) € H§+. (i1) Fix by Bh € R, -
= - i i _ - T
Let S (b ) = {(b ,q,) | 0<q Swp for 1=1,...,4 and b, = b} be the

bid-constrained strategy set for consumer h. Let s(b) =

- - x - - 2
Sl(bl) X, 40X Sh(bh) Xeae Sn(bn), where b (51,...,Bh,...,sn) € n§+.

We next define the offer—constrained and bid-constrained games, and the

corresponding NE strategies and allocations.

2.10. Definition. (1) The Of fer-Constrained Market Game r(q) 1is the same as

the Market Game T except that the strategy set S is replaced by the offer-
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constrained strategy set S(gq) (Definition (2.9)). (ii) The Bid-Constrained

Market Game T(b) 1is the same as the Market Game I except that the strategy

set S 1is replaced by the bid-constrained strategy set S(b) (Definition

(2.9)).

A NE strategy for the Offer-Constrained Game TI(q) is a o € S(q) with

the property

w (x (0)) = max _ ){uh(xh(olot'l))}

for h=1,...,n, where xh(o) and xh(cloﬁ) are defined by Equation
n
(2.2). The vector x(0o) (xl(o),...,xh(o),...,xn(o)) € R 1is the
corresponding NE allocation.
A NE strategy for the Bid-Constrained Game T(b) 1is a o € S(b) with

the property

" (%, (0)) = max _  {u (x, (ofa')} 105
U Y¥h ol < 5 (5) Yh ' h h

for h=1,...,n, where xh(c) and xh(o[o') are defined by Equation
£
(2.2). The vector x(o) = (x)(0) 5000, (0) 000, (0)) € n&i is the
corresponding NE allocation.
How are the NE of I, the NE of TI(q), and the NE of I(b) related?
An answer to this question is provided in the following proposition.

2.11. Proposition. (i) Let o = {(b )}E:T be a NE strategy for the Offer-

h*%h
Constrained Market Game T(q). If bids are strictly positive, i.e., if we

have bh € Dﬁ+ for h=1,...,n, then o 1is also a NE strategy for the
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Market Game TI. (ii) Let o = {(bh,qh)}::T be a NE strategy for the Bid-
Constrained Market Game r(b). If offers are strictly positive, i.e., we have

qy, € H§+ for h=1,...,n, then O is also a NE strategy for the Market

Game T.

Proof: Form the Lagrangian expression

11 i 1 {
O A A B T T L 90/ Y Doeee) ¥

=2 j=2
(2.12) ) ol v + ) J qj +
jop BB Tl "h Ih

Iy pd 3y - pd
Ay jzl {0Cay Ly B /0 ] — Byt

where Bg, ni, and Ah are nonnegative (scalar) Kuhn-Tucker-Lagrange

multipliers;ij

~

(1) Let o = {<bh’qh)}2:? be a NE strategy for I'(q) and assume that
gh € Bﬁ+. It follows from q € Hﬁ: that Budget Constraint (2.1) is binding

for consumer h. Fix q, = Hh in Ah and differentiate the Lagrangian

expression (2.12) with respect to bi which yields the first-order condition

h’
k=n ,1.2 -1

(2.13) —_— = —
axi (zk—n -1)2 (2 bi)
h k=1 Tk k#h "k

because at the optimum ei must equal zero because ﬂ% > 0., Since this is a
problem in concave programming the set of first-order conditions defined by

(2.13) (for 1 =1,...,2 and h = l,...,n) characterize the optimal-response
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bids % given the offers E.
We next show that the offers a are optimal responses to the bids b.

Fixing by = %h in A in Expression (2.12) and then differentiating with

h
respect to qi yields the first-order condition

~y -y 1
(2.18) oy Deen® oot e O Gentd 0
. o "1 " 1.2 .
X, L by (L 9)

= 0, so Equation (2.14) reduces to

=g ]

Since ai > 0, we have n

1,2 i
(2.15) _i - 1 2 Ai .
9%y Qe 9" Uy, By

Compare Equations (2.13) and (2.15). The bids E € IK£2 are NE responses to
the offers a if gnd only if the first-order constraint is satisfied. But if
{(gh,ﬁh)} solves the first-order equations defined in (2.13), then {(gh,ih)}
must also solve the first-order equations defined in (2.15) for i = l,e0.,2
and h=1,...,n. We have shown that {(ﬁh,ah)}gz? is a NE for T.

(11) In like fashion, we can show that 1f o 1is a NE to TI(b) with

q, € E§+ for h=1,...,n, then 0 1s also a NE to TI. -

Obviously not all beliefs about market thickness are self-justifying. If
a relatively small offer, aﬁ, is imposed on consumer h, he might have
desired to sell more of'commodity 1 given the bids and offers of others,
i.e., the constraint qi < ai would be binding. The constraint b; 20

could then also become binding: he might want to bid a negative amount to



-14—

make up for his meager offer, ai. On the other hand, (as the next
proposition establishes), if all offers are sufficiently large, then they are
self-justifying. Closed markets are self-justifying, thick markets are self-
justifying, but some thin markets are not self-justifying.

2.16. Proposition. Let o = {(b )}::T be a NE to the Offer-Constrained

n’Th
Market Game I(q). There is a positive scalar ¢ such that, if

i -i i
qh qh>wh'C

for h=1,...,n and 1 =1,...,2, then o 1is also a NE to the Market Game

Proof: Consider consumer h. Offers are fixed at q = (El,...,ah,...,in) € Hﬁi.

He takes the bids of others b_h = (b1’°"’bh-1’bh+1""’

fixed. He can guarantee his endowment by the bidding strategy given by

2(n=-1)
bn) € H&_ as

ai
i h i
(2.17) bh = 3 bk ,
) q, k#h
k#h

for 1 =1,...,8; cf. Equation (2.2). Hence, we have

w (x, (0)) > u € ) .

Thus, we have that if x = (xl,...,xh,...,xn) is a NE allocation, then we

know that xh € Kh c n§+, where
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) k=n
(2.18) R = {x €R, lw &) > w (o) and x < kzlmk }.

The set Ky is convex, compact, and by our assumption on the closure of

indifference surfaces, bounded away from the axes. Hence there is a positive

i
h

have xi > Ci for 1 =1,...,28. Therefore, for each NE allocation

scalar ¢ with the property that for each x, = (xé,...,xi,...,xﬁ) € Kh’ we

X = (xl,...,xh,...,xn) there is a positive scalar ¢ such that xi >t for

i=1,.,..,£ and h=1,...,n .

i 1
h 7 %

constructed. Consumer h must make a positive bid on market 1, bi >0, or

Assume that E -z, where [ 1is the positive scalar just

else the consumption vector x, would not belong to the set K. Hence, if

h’qh)::? is a NE for T(q) all bids must be positive, i.e.,

bh € n§+ for h=1,...,n. Therefore, by Proposition (2.11), o 1s also a

o= {(b
NE for the (unconstrained) Market Came T. ™

Next, we define an interior NE strategy vector and then study its welfare

and existence properties.

2.19. Definition. The strategy O = {(bh,qh)}g:? € S 1s said to be an

interior Nash Equilibrium to the market game T if o 1is a NE for T

(Definition (2.3)) in which each of the £ markets is open (Definition (2.6)).
The corresponding allocation x(o0) = (xl(o),...,xh(o),...,xn(c)) € Hﬁi is

called an interior NE allocation of T.

2.20. Proposition. An interior NE allocation of I 1is autarkic (i.e.,

Xy = W for h = 1,...,@) if and only if the endowment vector

w = (ml,...,wh,...,wn) is Pareto optimal. Furthermore, if w is not Pareto
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optimal, an interior NE allocation of T, x = (xl,...,xh,...,xn), must
satisfy uh(xh) > uh(mhx with strict inequality for at least one h,

h = 1,...,1‘1.

Proof: let x = (xl,...,xh,...,xn) be an interior NE allocation which is

autarkic, i.e., x =w = (wl,...,mh,...,wn). The interior first-order

condition,
155" 12 15" 312
1 DI ) ) ! q
(2.21) i A U W e el dn [ %
) du, (x )/Bx3 i k=n b - i
h* 7 h7 "h ) ) q ! ¢ | I b
k#hbk k=1 *| w#n Klg=p K

for 1,j =1,...,2, (along with equality in Budget—-Constraint (2.1)) 1is
necessary and sufficient for consumer h's utility to be optimized given the

strategies of the other consumers. Since X, = Wp» We must have

k=n
i . i
t Ly
h k=1 k i

for 1 =1,...,2, because of Equation (2.2). Hence, First-Order Condition

(2.21) yields

k=n 1 k=n

up (o) oy kzl & kzl 'k
(2.22) ————/—)—{- = = K= ’
Bu (w, )/3 1 j
Uhvh kzl R kzl "k LAY

APIT 701 yay
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for 1,y = 1,...,2. Since the right-hand side of Equation (2.22) is
independent of h, all consumers have the same marginal rates of
substitution, establishing that the allocation is Pareto optimal.

Consumer h, given the strategies of others, can always guarantee his
endowment by setting qi =0 and bé =0 for {=1,...,2. Thus, if
X = (xl,...,xh,...,xn) is a NE allocation, we have uh(xh) 2 uh(wh) for
h=1,...,n.

It follows that, if w 1s Pareto optimal, we have uh(xh) = uh(mh)
for h=1,...,n. Since wuy, 1s strictly increasing and strictly concave on
H¢+ , 1f o 1is Pareto optimal then the NE allocation must be autarkic, i.e.,
we must have x = w.

Assume next that the endowment vector, w = (wl,...,mh,...,mn), is not
Pareto optimal. Let x = (xl,...,xh,...,xn) be an interior NE allocation for
I'. We have already established that (i) X, # wy for at least one h, and
(1) uh(xh) 2 uh(mh) for all h. Since u, 1is strictly increasing and

strictly quasi-concave, we know that the strict inequality uh(xh) > uh(mh)

holds for at least one h, .

2.23. Proposition. There is an interior NE strategy O = {(bh,qh)}::? €S

for the Market Game T.

Proof: We adopt the following plan:

First, we specify that offers are equal to endowments, i.e., we have
i i
9 = 9y €R, for {=1,...,2 and h=1,...,n. Hence, we will have
constructed from the original Market Game T the Offer-Constrained Market

- - n h=n
= [ .

Game TI(q), where q =w €R . We know that if {(bh’mh)}h=1 is a NE

strategy for TI(q), where q = w, then {(bh,wh)};:? must be an interior NE



-18-

strategy for TI(q), and by Proposition (2.16), {(bh,wh)}::? is an interior
NE strategy for the (unconstrained) Market Game T.

Second, we seek a vector of bids b = (bl""’bh""’bn) in the unit

)}h=n

w1 is a NE for TI(q), where

simplex A Sien the property that {(bh,w
q = w. One looks for a continuous mapping of the simplex Aln into itself, a
fixed point of which is an (interior) NE of the offer-constrained game.

- 1 ? i’ 2 [} 2.

Let Y ((yh) ,...,(yh) ,...,(yh) ) € H&+ be a variable representing
the bids of consumer h. Choose be A%l apg construct (b]yﬁ), where
(blyﬁ) is b but with by, replaced by Yy,» The endowment vector is fixed
and the vector of offers is fixed, so from Equation (2.2), consumer h's
utility varies only with changes in bids. Therefore, we can express utilicy

1 i L 2

as a function of the bids, u,(b). Let Yy = (Yh,-o-,yh,-..,yh) € IR, be the
value of yﬁ which maximizes “h(bIYﬁ) subject to (yi)' 2 0 for
i= 1,.0.,2.

One is then tempted to map b > b' as follows

i

Yh
£ n ’

RS
j=1 k=1 K

iy, .
(b)' =

for 1 =1,...,4 and h = l,...,n. The approach does not work, because the

mapping described above is not well-defined. Let bi =0 for some i and

each k # h, so that Z bi = 0. 1If consumer h bids (yﬁ)' > 0, he would
k#h k=n {
expect to receive all of commodity 1, ) Wyee For each positive (yi)'
k=1
there is a smaller bid which is preferred by consumer h, but y; =0 is

clearly not an optimal bid for consumer h. In order to avoid this

difficulty, we replace .bt € R, with Bi € Ry, where

PO V. S

F SR
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1_ 1
(2.24) Bk max(bk,e)
and € 1is a positive scalar. Let B, = (B1 cee B1 .o Bl) e RY, for
h h’ ’hi ‘)h +

h=1,...,n and B = (Bl,...,B Bn) € Dﬁ:. Also let (Blzﬁ) be the

h’...’
vector B8 but with Bh replaced by z; = ((Z%)',---,(Zi)',---,(zé)') € Hﬁ

= (n-1) =
and let B_ = (B ,.ee,B 108 1yeeesB ) € RV Let g

(z;,...,zi,...,zi) be the value of zﬁ which maximizes uh(B]zﬂ). Then

define (ba)' by

il ==
(2.25) (b)) = -

for 1t =1,...,2 and h = 1,...,n. Equation (2.25) defines a mapping from

atn Aln, which takes the point b = (b},...,bi,...,bi) to the point

b' = ((bi)',...,(b;)',...,(bﬁ)'). We proceed to establish that for ¢

sufficiently small there is a (strictly positive) vector

* *
i) ,...,(bﬁ) ) € A* which is a fixed point to the mapping

b P> b' defined by Equation (2.25). The purpose of the following is to put

b* = ((b{ * e (b

bounds on the denominator of the right-hand side of Equation (2.25), which
will be used in establishing the continuity of this mapping for e

sufficiently small.
Claim 1: Consider bids b € Ain and choose € to satisfy

(2.26) 0 < e < (1/2n).

Then there are positive scalars 8 and 5, independent of b and €, with
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the property
j=2 k=n 3 -
(2'27) 9 S z Z zk S e ’
j=1 k=1

where the zi's are the maximizing responses to the “"adjusted bids" of

others, B—k'

1
h’...’

optimizing response, in the game T(q) with E = w, to the adjusted bids

Proof of Claim 1: Consider Bh = (B Bi,...,Bé), consumer h's

8 From Inequality (2.1), B8, must satisfy

-h* h
2 2
(2.28) f zi < AT Y si + zﬂ) ,
j=1 k#h j=1 i=1
where
max wi
= ]
1> 4 = [T Lt h > 0 .
- ,oou,n 3':1 i
w
k=1 k
n L i
We have Bj < bj + € and z Z by = 1; hence we have
k = "k k
k=1 j=1
n 2 j 2 j a
(2.29) 1 +2ne > ) ¥ B > I 1 B -
k=1 j=1 k#h j=1

Combining Inequalities (2.26), (2.28), and (2.29), yields

=L
j=1
Since we have 0 ¢ A < I, we have established the existence of the upper

bound §.

PRt
LR T
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Because b € Azn, there must be some consumer h and some commodity

i such that

I & > I b > (1/2a) .

k#h " k#h

Assume that z, = (zi,---,zi.-o-,2§) 1s h's optimizing response to the

"adjusted bids" B The resulting consumption by consumer h would be

-h*
given by

1 n
h 7o
?
z + ] Bl k=1 *
k#h

Zz

1 _
x =

Therefore, we

for { =1,...,2, from Equation (2.2) where we set q; = wi.

have

even if the B-h are disequilibrimm bids. Furthermore, consumer h can
always "defend his endowment" Wy by the strategy described in Equation

(2.17) in the proof of Proposition (2.16), and hence we have
. u (x) > u (w))

even if the B are disequilibrium bids.. Thus, consumption Xy must lie in

-h
the compact, convex set Kh defined in Equation (2.18). Kh is also — by
the assumption on the closure of indifference surfaces -- bounded away from

the axes. Thus, there is a positive scalar ¢ such that xz > ¢ for
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h=1,.0.,m and 1 = ly¢..,2. Hence, we have

i

“

k=1

+ ) B
k#h

o 0

Hr~—3

> ¢

2 i
k

=

and thus we have

N’

z

n
I w
=1

i
h

PR

k

This establishes the existence of the lower bound 8. The proof of Claim ! is

complete.

Claim 2: Choose € to satisfy Inequality (2.26). Then the mapping b + b’

*
defined by Equations (2.24)-(2.25) has a fixed point, b € Aln.

Proof of Claim 2: “Adjusted bids"” B are obviously single-valued and

continuous in bids b for every €. Since u, 1s strictly quasi-concave,

z2y, 1s single-valued and continuous in B (and therefore in b). If we have
0 <& < (1/2n), then by Claim 1 the mapping b > b' {g single valued and
continuous. The mapping takes afn into itself. An application of Brouwer's

fixed-point theorem completes the proof.

Claim 3: Let Z, be consumer h's optimal response to the bids b, (or to
"adjusted” bids B_h) and let X be the corresponding consumption plan of
consumer h. The marginal rates of commodity substitution satisfy

i
auh(xh)/axh

(2.30) « ¢ —2_2 ¢ y

auh(xh)/axg

b r—— g s s 1
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where & and Y are positive scalars, for 1,j = lyeee,2 and h = lyees,n.

Proof of Claim 3: The result follows from the fact that we have X € Kh, a

compact set, for h = 1,...,n, and that the marginal rates of substitution

are continuous functions of Xpe

2.31 Definition. let M be given by

(1+€)ZM1
(2.32) M =
a[min(6,1)]
where
) wli ( IZI "’ijc)z
(2.33) M, = max k*: k=1 ,
h,i,J h|
’ (7 w) I W
-1 k k#h ¥

@ 1is defined in Inequality (2.30), and ® and T are defined in Inequality

(2.27).

In the next claim, we show there is a lower bound to the sum of the
fixed-point adjusted bids on any market. Intuitively, we exclude the case

where the price on some market is arbitrarily small.

Claim 4: Let ¢ satisfy Inequality (2.26). Let b* = ((bi)*,...,

* *
i) ,...,(bi) ) be the fixed-point vector of bids, the existence of which

i
h

* *
the corresponding vector of adjusted bids defined by (Bi) = max((bi) yE) .

(b

* * * *
was established in Claim 2 above, and let B8 = ((Bi) seeey(BD) ,...,(B:) ) be



Then we have

(2.34)

for 1 = l,...,2, where

Proof of Claim: Assume the contrary.

market (call it market 1)

(2.35)
k=1

There must be some consumer (call him consumer h)

i.%

we have

-24~

1/20M

M 1is given in Definition (2.31).

In particular, assume that on some

) GO < v

whose fixed-point bid,

(bh) » 1s less than or equal to the sum of the augmented bids of the others

on market {.

consumption basket in

Since in response to

*
-k’

consumer h will choose a

K, (Definition (2.18)), and since the first-order

utility-maximizing conditions are necessary and sufficient, we have
%
in + T 6O o
k#h k#h
i+
E WL I ()
k k#h
_ k=1 ]
(2.36) - > «
e
EENRCI TN
k#h k#h
E3
P I )
k=1 ] \eh

for

marginal rate of substitution

1,§ = 1,...,%, because the left-hand side of Inequality (2.36) is the
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i
3uh(xh)/8xh

3
Buy (x, )/ 3%

cf. Claim 3 above. Combining Inequality (2.36) with Equation (2.33) yields

G N R SN
k#h k#h
(2.37) T T Gl > o .
(8:) z; + (8:)
k#h K B fsp K

From Equation (2.25), the fact that b* 1is a fixed point, and Inequality

(2.27), we have

But market 1 was chosen so that

) (Bi‘)* < (1/2nM),

k#h

by Inequality (2.35). Hence, we have

i 1.* PG R 1 =
(2.38) zh+k§h(8k) < 9(bh) + (1/20M) < (m)(%l) .

By similar reasoning, we'get

(2.39) 2 + 7 DY > eh* + T H* > L (mince,1)] .
b ysn K h k#h < 4n -

Substituting from Inequalities (2.38) and (2.39) into Inequality (2.37) yields
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i *
M1(§ + 1) E(bh)

(2.40) Hlaia(o, D] ; (si)* +1 > a .
k

k#h

*
Consumer h was chosen because his bid is less than or equal to ) (Bi) ,
k+h
so using Inequality (2.40), we have

(1+€)2 Ml

(2.41) alaia(e, D7

> M,

which is a contradiction to Equation (2.32), in which M 1is defined. This

contradiction completes the proof of Claim 4.
Claim 5: Choose € to satisfy Inequality (2.26) and

- n
(2.42) e < £/(4nM8 max ( } wi)) ,
j k=1
where Z 1is the lower bound on xﬁ 1 =1,00.,8; h = 1,...,n) which follows
from X € Kh (h = 1,...,n) (cf. Equation (2.18)). Let
* * * *
b = ((bi) ,...,(bi) ,...,(bﬁ) ) be the fixed-point vector of bids, the

existence of which was established in Claim 2 above. Then we have

1. *
(2.43) (bh) > €

for 1 =1,...,4 and h = l,e0.,n.

Proof of Claim S5: Assume the contrary. Then there is some consumer (call him

consumer h) and some market (call it market i) with the property

(2.44) hH* < e,
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so that we have

*
(2.45) (81)" = e.
Given the adjusted bids of the others, B—h’ h's responses z; must be

consistent with X € Kh (cf. Equation (2.18)), so we must have

(2.46) L < J k=1

n *
7 (8))
k=1 k

4m{§@

Using Inequalities (2.27; Claim 1) and (2.34; Claim 4) and Stipulation (2.45)

in Inequality (2.46) yields

€6 max ? mﬂ
(2.47) z < J k=1 )
1/2nM

There 1s no positive € which satisfies both Inequality (2.42) and Inequality
(2.47). This is a contradiction to Assumption (2.44). The proof of Claim 5

is complete.

Claim 6: Choose € to satisfy Inequalities (2.26) and (2.42). 1let

* 1. % { % X

b = ((bl) ,...,(bh) ,..;,(bn) ) be the fixed point, the existence of which
. h=n _ * h=n

is established in Claim 2. Then ¢ = {(bh,qh)}h=1 {(bh,mh)}h=1 is a NE

strategy for the Of fer-Constrained Game r(q) where a = w,

Proof of Claim 6: From Claim 2, Claim 5, and Equations (2.24)-(2.25), we have
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*
L 2 (b")
(2.48) (b)) .
h n L j *
AR
k=1 j=1
i, * * *
where, for example, 2z (b ) 1is consumer h's response to (b .) = (B,) -
h -h ~h

We shall show that the denominator in Equation (2.48) is equal to unity. This

will be accomplished in two steps.

Step 1: Assume that

L n j, *
LI IR
3=1 k=1
i.* i, *
Then we have (bh) < zh(b ) for i =1,.0.,2£ and h=1,...,n. Given

*
(b-h) , consumer h desires to increase each of his bids. Hence, at bids

b*, there is slack in budget Constraint (2.1); namely, we have

3
L * L w, n -
G RS B N
ji=1 j=1 z mj k=1
k
k=1
Summing the above over consumers yields
L n IR L n wi n . x
(2.49) I T < I 1 |5 LY .
j=1 k=1 j=1 k=1 i k'=
Z wy
k'=1 k

The right-hand side of Equation (2.49) can be simplified to become zj zk (bi)*’

*
which yields a contradiction. Hence, we have zj Zk zi(b ) < 1.
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Step 2: Assume that TRE LS
L n
*
I 1 zeh <
j=1 k=1
i.* i, *
Then we would have (bh) > zh(b ) for {1 =1,...,2 and h =1,...,n. The

only way this could occur is if the bids b* were not consistent with Budget

Constraint (2.1), i.e.,

b
L 2 w n .
) (bi)* > ) nk y bi .
i=1 j=1 z wj k=1
k=1 k

Summing the above over consumers and simplifying as before yields

(2.50) IIab*>7 1 eh,
i K ik

which is a contradiction. It follows that

2 n
) zi(b*) =1
i=1 k=1
and hence
N R
(bh) = zh(b )9

*
for {1 =1,...,2 and h=1,...,n. We have established that b are NE bids

for offers q = w 1in the game T(q). The proof of Claim 6 is complete.
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Proof of Proposition (2.23): We know from Claim 2 that there is a fixed

point b* to the mapping defined by Equations (2.24)-(2.25) if € 1is chosen
to satisfy Inequality (2.26). If € also satisfies Inequality (2.42), we

* * *
have from Claims 5 and 6 that Zi(b ) = (bi) = (Bi) for 1 =1,...,2 and

h=n

h=1 is a NE to

h=n _ *
h=1...,n. Hence, the strategy O {(bh’qh)}h=1 {(bh,wh)}
the Of fer-Constrained Market Game F(a) where E = w. From Proposition
(2.16), we also have that o0 is a NE strategy for the (unconstrained) Market

Game I'. This completes the proof of Proposition (2.23).51 —

3. Extrinsic uncertainty: The Securities Game.

In this section, we introduce purely extrinsic uncertainty. The state of
nature can be thought of as given by the level of "sunspot activity". By
definition, the fundamentals of the economy — here, tastes and endowments --
are unaffected by sunspot activity. Spot market trading is the same as
described in Section 2, but there are now securities markets in which

consumers are able to hedge against the potential economic effects of

sunspots.
Observation Consumption
of of
Sunspots Commodities
o 0. 0. 0O
Securities Securities
Traded Redgemed
Commodities
Traded
Figure 1

Figure 1 is our time line. Each of the n consumers is alive and active
during the entire period. There are r states of nature indexed by s. Let

_ 1 i ' L '
xh(s) = (xh(s),...,xh(s),...,xh(s)) € E§+ be consumer h's consumption
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basket if state s occurs (s = l,00e,r and h = 1,e4.,n) and define

;}1 = (xh(l)’."’xh(s)”")xh(r)) € ]R_%_I*-_ and i = (;I,Oa-,i‘h,occ,;n) € ]R:‘_in.

Consumer h has the strictly concave von Neumann-Morgenstern utility function

Yy defined by

r
v (%) = g n(s)u, (x,(s))
s=1
where up {s the utility function described in Section 2, n(s) is the
(objective) probability of the occurrence of state s, 0 < n(s) <1,
s3T 1 1 L 2
§ow(s) = 1. Let wh(s) = (mh(s),...,wh(s),...,mh(S)) € R, be consumer h's

s=1
endowments in state s, and define w, = (wh(l),...,wh(s),...,wh(r)) € Eﬁi

h
and @ = (51,...,5h,...,$n) € H&in. Since uncertainty is purely extrinsic,
we have
wh(s) = mh
for s = l,eee,r and h = l,...,0, Where wh is the certainty endowment
vector introduced in Section 2.

The new featuré is the securities market, composed of T trading posts, one
for each state of nature. Bids are denominated in “general monetary units”, but
offers are made in state-specific units of account. After the state of nature
s 1s observed, consumers trade on the spot market, composed as in Section 2 of
% posts, one for each cqmmodity. Let bi(s) and qi(s) be, respectively, the
bid and the offer of consumer h on spot market trading post i given that

gtate of nature s has occurred. Let bE(s) and qz(s) be, respectively,

the bid and the offer of consumer h on security market s. Define Sh and

~ ~

§, bv b = (blll(l),...,b{-‘(l),...,bf’l(l),...,b%l(s),...,b}i\(s),...,b{;(s),

...,bi(r),...,bi(r),...,ﬁﬁ(r); bﬁ(l),...,bg(s),...,bz(r)) € E§(1+1) and
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Y, = (q;(l),...,qi(l),...,qﬁ(l),...,q;(s),...,qi(s),...qé(s),...,q;(r),

...,qi(r),...,qi(r); qz(l),...,q:(s),...,qg(r)) € E§(£+1). Also define the

strategy ¢ = (01,...,oh,...,on) by 0, = (bh’qh)' Then the strategy set Sh

for consumer h in the securities game T 4is given by

(3.1) 3 ={0, € ngr(l+1) | qi(s) < ol for 1=1,...,¢4 and s = 1,000, } o
h h + h - h

Define o and S by o= (31,...,gh,...,5n) € §1 XoeooX gh XeoeX §n= S. Also
T I = I LN ) [+ ] o e ] e o e @ L3N 2N ] g
define o_ by Oy (G, WS 1% ,on) §1 XoeoX §h_1 x §h+1 X.a0X §

and (3\3&) by (B13)) = (51,...,8h_1,8£ ,8h+1,...,8n) e 8.

There are two markets. The securities market, which meets before the
state of nature, S, is observed and the spot commodities market, which meets
after the state of nature S is observed. Consumer h mst satisfy two
constraints, one for each market; if either one or both are not satisfied,

consumer h is punished. The securities—market constraint is:

o - kz by (s)
m m =
(3.2.1) 521 bh(S) < szl qh(S) _T;;T—:;—‘__ ’
) qk(S)
k=1

i.e., the sum of the securities—-market bids in “general dollars" (the left-
hand side of Inequality (3.2.1)) must be no greater than the sum of the

revenue in "general dollars” from the sales of securitieslj (the right-hand side
of Inequality (3.2.1)). Purchases of securities are financed by the sales of
securities. A single unit of security s pays one unit of account in state

s and zero otherwise. ‘Security s can be thought of as state-s money, OT

state-s dollars, dollars accepted in state S and only in state s.
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1f consumer h had neither bought nor sold securities, he would have

faced the commodity-market budget constraint

k=n
) 7 bi(s)
i=t L L D
I obp(s) & 1 faple) ==
-1 3=1 3
3 L g(s)
k=1

for s = 1l,...,r. Without any securities income or obligations, he must
finance his bids for commodities in state-s dollars (the left—hand side of

the above inequality) from his receipts in state-s dollars based on his sales

of commodities.

In general, consumer h's situation is more complicated. On the
gsecurities market, he has given up q:(s) state-s dollars, but he has

received

k=n n
I q,(s)
m k=1
Ph(s) Je=m——
y b, (s)
k=1

state-s dollars in payment for his securities-market bid bﬁ(s). Hence, in

order to avoid punishment, consumer h must meet the commodity-market budget

constraint:

k= k=n
] ) QE(S)
deey XL k=1
1 h =n j h =n

EEACY

- - qx(S)
)
1 k=1

e
[ aee |
=

§=2
(3.2.11) ] bl(e) <

=1 h| bE(s)
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for s = 1l,e..,T.

The consumption, ;h’ of consumer h 1is given by

LI
kEI q, (s)
1 i 1 i =
( x(s) = o - q(s) +,b°(s) — :
) b (s)
k=1 %
(3.3) 3 if the Budget Constraints (3.2.1)-(3.2.1i) hold,

xi(s) = 0 otherwise,

for 1 =1,...,2 and s = l,..¢.,r.

The System of Equations (3.3) is consistent with the following auditing-
punishment procedure: Trade takes place on the securities market, and if
Constraint (3.2.1) is violated, consumer h 1is punished on the spot market no
matter which state of nature occurs, i.e., xh(s) =0 for s =1,.0.,r. Then
the referee audits the consumers' spot market plans. If it is the case that
in some state of nature s, consumer h violates Constraint (3.2.ii), then
he is punished on the spot market no matter which state of nature occurs,
i.e., xh(s') =0 for s8' =1,...,r.

Some further comments regarding constraints (3.2) are in order. The

expression
S m
y q, (s)
. =1
EILFRESS b:(S) T ) q:(S)
= - ‘g2 tyayy oY
L b,(s)

k=1
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gives the net number of state-s securities purchased by consumer h. The
expression (Xk bt(s) / Zk qt(s)) is the price of the state-s security, so
Inequality (3.2.1i) says that the value in “"general dollars™ of net securities
purchases must be nonpositive. There are sufficient degrees of freedom to
normalize bids on each state's spot market (as long as not all trading posts
for that state are closed), which fixes the value of money in that state.
Unless all securities trading posts are closed, then we can also normalize the
bids on the securities market.

From the Market Game I and the random variable s, we have constructed
the Securities Game T, which can be thought of as the noncompetitive analogue
of the Arrow [1] securities model. It can also be thought of as the noncompet-
itive analogue of the particular Cass-Shell [6] sunspot model in which there
are no restrictions on market participation:ﬁf The Securities Game T is

completely specified. The strategy sets are §h (h =1,...,n); cf. Equation

(3.1). The outcomes (xh(l),...,xh(r)) (h = 1,...,n) are given by Equation
(3.3), and the payoffs are the expected utilities v, (h = l1,e..,n) at

probabilities {n(s)}2:§ . We adopt the standard definition of Nash Equilibrium.

3.4. Definition. A Nash Equilibrium strategy to the Securities Game T 1is a

G €3 with the property

v, (%, () = max v, (x, (5]0})) }
cﬁ € Sh

for h=1,...,n. The corresponding NE allocation is x(9) =

<;1(a>,...,;ha),...,;n(a)) e )T,

We next establish that the game T 1is "individually rational” for each
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of the n consumers.

3.5. Lemma. let 5. be consumer h's best response to the strategies o

h
{n the Market Game T, i.e.,

~ el L ~
vh(xh(o)) ) max { vh(xh(o\ch)) Y.
1 4
oh € Sh
Then, we have
vh(xh(o)) > vh(mh) = vh(wh,...,wh)

T
= ) n(s)u, (v ) = w (@) -

s=1

Proof: If, in response to the strategies, © of the others, consumer

=h’
plays the trivial strategy gh given by

i _ i - m - m -
bh(s) = 0, qh(s) = 0, bh(s) 0, and qh(s) 0,

for 1 =1,.0.,4 and 8 = l,...,r, then from Equation (3.3), we have

xi(s) = wz for 1 = l,es.,%4 and 8 = l,...,r. Hence, we have

v G (39D 2 vy (8) = vy (oo o)
8=T
- Szl n(s)u, (w) = v (@)

The inequality above reflects consumer h's ability to “defend his endow—
. s=r
ments”. The last equality above is a consequence of z m(s) = 1.
s=1

-h

(.
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We next show that T thas a trivial NE. Llater we show that there is also

a nontrivial NE for T.

3.6. lemma. Let T be the vector in § with each component zero. Then o
is a NE strategy for T. The corresponding NE allocation is X =

~

X o e ...~ =~= ® L3 N ] ® '..~ e rn
(X)yeeesBys R T o) nﬁ+ .

Proof: Obvious. (|

3.7. Definition. A NE strategy {s said to be interior if it entails each

market (including the markets for gecurities) being open, i.e., we have

k=n j k=n n
] b(s) >0 for j = 1,...,2 and 8 = l,eee,Ty and ] by(s) >0 for
k=1 k=1

8§ = l,e0ee,Te

3.8. Definition. We say that sunspots do not matter if in the allocation of

consunption goods, we have

(3.9) xh(S) = xh(S')

for h=1,.0.,n and §,8'" = 1,000,Ts Otherwise, sunspots matter. A NE to

¥ {in which Condition (3.9) is satisfied (resp; not satisfied) is called a

Nonsunspot NE (resp. Sunspot NE) to T.

It is easy to display an interior Nonsunspot NE to T. This is done in

the next proposition.

3.10. Proposition. The Securities Game T has an interior Nonsunspot NE.
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Proof: Llet o = {(b )}::T € S be an interior NE of the certainty game T

kK
(analyzed in Section 2). From Proposition (2.23), we know that there is such a

strategy 0. We now construct G €S to be an interior Nonsunspot NE to T:

|
o

bﬁ(s) = b for 1 = 1l,eee,2; 8 =1,0c0,r; h =1,..0,0;5

i i
qh(s) = q for 1 = 1,000,823 8 = 1,00e,r; h =1,...,0;5
(3.11)
b:(s) =n(s) for 8 = l,eee,r; h = 1,.0.,n3
m
qh(s) =1 for s = l,.e.,Tr; h = 1,...,0.

No income is being transferred between states 1f 0 defined by (3.11) is the
strategy vector for T. Hence the Constraint (3.2.1i) holds with equality.
Then, Constraint (3.2.11) holds with equality since o0 1is an interior NE of
r.

Since all markets are open in the securities game T for the strategy [
described in Equatiéns (3.11), the first-order conditions for utility
maximization under binding Constraints (3.2) are necessary and sufficient for

optimality. These conditions are

Ap(s)
(3.12) I = _ _ _
X I owiey | T ake Py den |} v )1 ?
i s) q. (s q (s’ b’ (s’
wgs)) Bu, (x, (8))/3x, (8) gy % k=1 % k#h X k=1 &
(5T 3y, (x, (")) /3x3 (") 1 nooy I blsn | B3
h*"h h Y oq(s) | I b (s) k Y qu(s")
R L% k#h L%

and
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— -1 - T
I e | L e 2y e | L as) i
q
3.13 WO wEn | kel Kfh © e
( ) ) s 2 m ri m z m n m
(s) q, (s) a(s')| L b (s")
k#h % Lk=1 k k#h k Lk=1 k

for h =1,...,0; 1,3 = l,e00,%2; and 8,58" = 1,s00,I3 and Ah(s) and
Xh(s') are (respectively) the Kuhn-Tucker-Langrange multipliers associated
with Constraint (3.2.i11) for states s and s'.

Substitute the data from (3.11) ianto the right-hand side of Equation

(3.13), which is consistent if

Als)  w(s)

(3.14) W—m .

1f we substitute from Equation (3.14), Equation (3.12) must hold because of
First-order Condition (2.13).
Thus, O € S defined by Equations (3.11) is an interior NE for T .

Since we have xp(s) = xh(s') for s,s' = 1l,...,r and h=1,e00,0, 0 1is

also a Nonsunspot NE for the Securities Game T . -

3.15. Remark. A careful reading of the proof of Proposition (3.10) shows that

for every NE strategy O € S (with corresponding allocation =x(0) € E&i)

for the Market Game T there is an "equivalent” NE strategy g €S for the

L
nry

Securities Game T (with corresponding allocation x(0) € R, The

~

strategies ¢ and O are equivalent in the sense
(3.16) x (3 o) = ’%(0)

for s = 1l,ee.,r and h =1,...,0. Thus x(J) 1s a Nonsunspot NE for T.

Essentially, the NE to I reappear as the Nonsunspot NE to T.

s
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In the remainder of this section we show that Sunspot NE to T must
exist. We also analyze the relationship of these Sunspot NE to the Correlated
Equilibria of the certainty game T , and discuss the macroeconomic importance
of various types of Sunspot NE.

~

3.17. Proposition. There is a Sunspot NE o0 € S to the Securities Game T

if and only if the endowment vector w € Eﬁi in the corresponding

(certainty) Market Game I is not Pareto-optimal.

Proof: Assume that ®w 1is not Pareto—-optimal. Then there are at least two NE

strategies for T, o' = 0 € S (with the corresponding allocation

((xl)',...,(xh)',...,(xn)') =uw € nﬁ:), and an interior NE strategy

w «1h=n “ wyh=n
o {(Oh) }h=1 {((bh) ,(qh) )}h=1 (with the corresponding.allocation

)",...,(xn)") € Hﬁ:). Cf. Lemma (2.5) and Proposition

»
L]

((xl) ,...,(xh
(2.23). From Proposition (2.20), we know that x' and =x" are not equal.

Partition the states of nature {l,...,r} into two subsets, A (for
“"autarky”) and I (for "interior”). We have AUV I = {l,...,r}, ANn1I=20,

A+ @, and I # Pp. We construct the Sunspot NE o0 for the Securities Game

T from these two NE of the Market Game T as follows:

f
bi(s) =0,
i
qh(s) - O)
(3.18.A) {
m
bh(s) = 0,
]
m
L qh(S) = 0, A83300 5 &)

colissclia ad

for s€ A, h=1,,..,n, and 1 =1,...,2; and -
somh J39) T amal

s e sXSsl:av mobnsy
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f 4 i rebnlseey sds o
bh(s) = (bh)".
v npls oV
ale) = @, SR
(3.18.1) ﬁ
m
bh(s) = 0,
m

s€ I, h=1,...,n, and i=1,000,%, where (bﬁ)" and (qi)" are

bids and offers in the {nterior NE strategy O~ for the Market Game [I. The

strategy % €8 1is clearly a Sunspot NE for the Securities Game T.

Assume that o 1s Pareto-optimal in T. Clearly, then @ 1is also

Pareto-optimal in T. Assume that X = (;1’°'°';h""’;n) is a Sunspot NE

allocation in T. By Lemma (3.5), we have

(3.19) vh(xh) 2 vh(wh,...,wh) = uh(mh).

Because of the strict concavity of u, 2 Sunspot allocation cannot be Pareto—

optimal. We have a contradiction. If % 1is Pareto—optimal in T, there are

no Sunspot NE for T. 1Indeed, the only NE allocation is

=0 = ($1’°°"$n) € Héir. (The vector % 1s both an interior NE

allocation for T and an autarkic NE allocation for ?.)

The proof of Proposition (3.17) is complete. —

3.20. Remark. The Sunspot NE allocation % constructed in Proposition (3.17)

{s a lottery over (certainty) NE from the underlying Market Game T. As such,

the allocation % 1s also a Correlated Equilibrium allocation to the Market

Game

I (cf. Aumann [2,3]), where the probability mechanism is based on the

random variable s and probabilities n(s), used in defining the securities
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game T. (Note that this particular probability mechanism is degenerate in
that each consumer's signal, sunspot activity, is perfectly correlated with
that of each other consumer. Aumann [2,3], of course, allows for — indeed,

he makes much of == imperfectly correlated signals.aj)

The Sunspot NE to the Securities Game T in Proposition (3.17) is
constructed as a lottery over (1) the closed-commodity—market NE to I and
(i1) the thick-commodity-market NE to [ in which each consumer offers all of
his endowments. There are indeed a continuum of NE to T, parameterized by
market thickness; cf., in general, our Proposition (2.16) and, for the two-
person case, Shapley [15]. Next we consider an example of a 2 x 2 Market
Game I'. We calculate three interior NE to this game and show how the
equilibria relate to market thickness. Later, we use these calculated

equilibria in constructing exanmples of interior and noninterior Sunspot NE to

the related Securities Game T.

3,21. Example. Let there be two consumers (h = 1,2) and two commodities

(1 =1,2), so that n =2 and g = 2. The following data about consumer
preferences and endowments complete the description of the (certainty) Market

Game It
1 2 1 2
= =
uh(xh,xh) log xh + log xh for h 1,2

(3.22) and

_ 1 2, _ . - 1 2y _
w, = (ml,ml) = (80,20); w, (wz,mz) (20,80).
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Solution 1 to Example (3.21): The example exhibits a skew-symmetry between

the two consumers. Hence, if each of the consumers offers 1007 of his
endowment for sale, we have the skew-symmetric interior NE to T displayed
below. This is a thick-market solution. Trading is substantial, but since
this game is neither cooperative nor perfectly competitive, the allocation of

consumption goods is still far from Pareto-optimal.

Commodity 1 Commodity 2

y zid
by .3333 .1667 d
q1 80.0000 20.0000 s g
X 66.6667 33.3333 noRIng
by .1667 .3333 r

R

q9 20.0000 80.0000 82
X9 33.3333 66.6667 ine

Solution 1 to the 2 x 2 Game T of Example (3.21): Each Consumer Offers
All of his Endowments

Solution 2 to Example (3.21): Here markets are thinner than before. Each

consumer offers for sale only 25% of his endowments. Trading is substantially
less than in the first example. Lack of consumer confidence is self-justi-
fying. Skew-symmetry is preserved. Each consumer is worse off in Solution 2

than in Solution 1. The NE is interior.



Commodity 1 Commodity 2
b .2892 .2108
q 20.0000 5.0000
X 74.4603 25.5397
bsy .2108 .2892
q2 5.0000 20.0000
X9 25.5397 74.4603

Solution 2 to the 2 x 2 Game T of Example (3.21): Each Consumer oOffers
25% of his Endowments

Solution 3 to Example (3.21): The NE is interior, but the skew-symmetry is

broken. Consumer 1 offers 100% of his endowments, but Consumer 2 offers only
25%Z. These strategies are self-justifying. Markets are thin relative to
those in Solution 1. Each consumer is worse off than in Solution 1. Consumer
2 is worse off here‘than he is in Solution 2, while Consumer 1 is better off
here than he is in Solution 2. Indeed, in moving from Solution 2 to Solution
3, Consumer 1 gives up .2367 units of Commodity 1, the marginal utility of
which is relatively low, in exchange for 4.2573 units of Commodity 2, the

marginal utility of which is relatively high.

(88.E8)

Jogqenu® solissel smoZ  (t1})
.3on 91 |
e sulidifllop® bsislexted
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Commodity 1 Commodity 2
b; .6836 .1618
q 80.0000 20.0000
Xy 74.2236 29.7970
by .0992 .0554
99 5.0000 20.0000
X9 25.7764 70.2029

Solution 3 to the 2 x 2 Game I of Example (3.21): Consumer 1 Offers All
of his Endowments; Consumer 2 Offers 25% of his Endowments

The following is an example of a Securities Game T which is based on

the Market Game I described by Equations (3.22) (cf. Example (3.21)).

3.23. Example. let I be described by the Data (3.22). Let there be two

states s =a,8 (i.e., r = 2) and assume that the extrinsic random
variable s obeys the probability law n(a) = w(B) = 1/2. Let T be the
corresponding securities game.

Next, we compute three Sunspot NE for T. The allocation of resources

varies across states of nature as market thickness varies. These solutions

establish:
~ (1) Some Sunspot NE to T are interior; others are not.
(11) Some interior Sunspot NE to T 1involve nonzero net trades
(3.24)ﬁ on the securities market; others do not.
(i1i) Some interior Sunspot NE allocations to I are also

Correlated Equilibrium allocations to TI; others are not.
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Solution 1 to Example (3.23): State o 1s the “good state”, which

corresponds to the interior NE for I given in Solution 1 to (3.21). State
8 1is the "bad state”, which corresponds to the interior NE for [ given in
Solution 2 to (3.21). “confidence” drops in moving from o to By all
offers are reduced by 75%, creating thin markets. Each consumer is worse off
in B8 than in a. The price of the &= security in terms of the

g- security 1s

(155.8731 + 155.8731) / (100 + 100) _ 5. 53 .
(45,1260 + 44.1269) 7 (100 + ooy "7

Despite their relative poverty in state B, each consumer is (just) willing
to give up 3.53 state-8 dollars in exchange for a single state-a dollar.
"Needs"” are greater in g than in o, but "opportunities™ in @ are very
mich greater than in B8, which is reflected in the exchange rate between
a-dollars and B-dollars.

Because of the various symmetries, it turms out that in equilibrium
Consumer 1 and Consumer 2 have the same relative utility weights for state—a
{ncome versus state-B 1income. There are then no social gains to be made
from transferring income across the states of nature. Hence, we have an
interior Sunspot NE to T 4n which net securities trades are zero.
Therefore, this interior Sunspot NE allocation can be taken as a lottery over
interior NE for the (certainty) Market Game I; (cf. Solutions 1 and 2 to
Example (3.21)). Furthermore, this interior Sunspot NE allocation (to T) is

also a Correlated Fquilibrium allocation for the (certainty) Market Game T.
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State o State B

Comm. 1 Comm. 2 Security Comm. 1 Comm. 2 Security
31 .3333 .1667 155.8731 .2892 .2108 44,1269
El 80,0000 20,0000 100.0000 20.0000 5.0000 100.0000
;1 66,6667 33.3333 - - 74.4603 25.5397 - -
32 .1667 .3333 155.8731 .2108 .2892 44,1269
EZ 20.0000 80.0000 100.0000 5.0000 20.0000 100.0000
;2 33.3333 66.6667 - - 25.5397 74.4603 - -

Solution 1 to the Game
and Thin in State

State «

B.

Solution 2 to Example (3.23):

offers 100% of his endowment in state

are thick.

Consumer 1 offers

Stat

100%

e a

as;

the commodity markets in state

T defined in Example (3.23):

is the good state.

Markets are Thick in
Net Securities Purchases are Zero.

of his endowment in state B8

state, but Consumer 2 offers only 25% of his endowment in state

consumers are worse off in B8

turns out, in this particular case, to be the more dramatic.

markets are closed.

than in

a,

B.

Each consumer

a

the bad

Both

although the impact on Consumer 2

The securities

Hence, this solution can be taken as a lottery over

jnterior NE Solutions (1) and (3) (to Examples (3.21)) in the (certainty)

Market Game

Tr.

This solution is a Sunspot NE which is not interior.

The

corresponding Sunspot NE allocation is also a Correlated Equilibrium

allocation to the (certainty) Market Game

T.
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State @ State B
Comm. 1 Comm. 2 Security Comm. 1 Comm. 2 Security
%1 .3333 .1667 0. .6836 .1618 0.
El 80.0000 20.0000 0. 80.0000 20.0000 0.
;1 66.6667 33.3333 - - 74,2236 29,7970 - -
%2 .1667 .3333 0. .0992 .0554 0.
32 20.0000 80.0000 0. 5.0000 20.0000 0.
§2 33.3333 66.6667 - - 25.7764 70.2029 - -

Solution 2 to the Game T defined in Example (3.23): Consumer 2 Reduces his
Offers to 25% in State B. The Securities Markets are Closed.

Solution 3 to Example (3.23): Solution 3 1s very much like Solution 2 with

one very important difference: In Solution 3, the securities markets are open
and net securities purchases are nonzero. The price of the a-security in

terms of the B-security 1is

(116.3231 + 116.3031) / (100 + 100) _ , 44
(83.6768 + 83.6968) / (100 + 100) :

Consumer l's purchases of the a-security (or better, a-money) are
200{(116.3211) / (116.3211 + 116.3031)] = 100.0077 units. His net purchases

of the a-money are hence .0077 units. Consumer 1's bids for commodities in
state @ sum to .5087 (= .3376 + .1710) state-a dollars, of which .0077
state-a dollars (amounting to 1.5% of the total) are financed by his purchases

of a-money in the securities market.

Consumer 1 transfers income into state a, while consumer 2 transfers
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income into state B. Consumer 1 seeks commodity 2 in state B8, but Consumer
2 offers little of this commodity. Hence, Consumer 1 parts with commodity 1
in state B8 1in exchange for state-8 money, a substantial portion of which he
then exchanges for state-a money. The state-a money is used to finance his
purchases of commodities in state «.

Compare Solutions (2) and (3) (Example (3.23)). With open security
markets (Solution 3), Consumer 1 increases his consumption of both commodities
in (the good state) o and reduces his consumption of both commodities in
(the bad state) B.

Solution 3 is especially noteworthy. It is an interior Sunspot NE

solution to T with open and active securities markets. Hence, this solution

cannot be considered to be a lottery over NE solutions to I. The
corresponding Sunspot NE allocation is not a Correlated Equilibrium allocation
to the (certainty) Market Game TI. (Every Correlated Equilibrium allocation
to I 1is also a Sunspot Equilibrium allocation to F, but some Sunspot
Equilibrium allocations to T are not Correlated Equilibrium allocations to

r.)

b B R T T
Y L TRETY &3

%1838 o¥nl smosnl srvelss
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State @ State 8

Comm. 1 Comm. 2 Security Comm. 1 Comm. 2 Security
T>1 .3376 .1710 116.3231 6741 .1586 83.6768
El 80.0000 20. 0000 100.0000 80.0000 20.0000 100.0000
;l 67.5204 34,1981 - - 73.3364 29.0214 - -
%2 .1624 .3290 116.3031 .1072 .0600 83.6968
32 20.0000 80.0000 100.0000 5.0000 20,0000 100.0000
;2 32.4796 65.8019 - - 26.6636 70.9786 - -

Solution 3 to the Game
Of fers to 25% in State

of Securities are Nonzero.

4., The large Economy.

Our analysis of the finite Securities Game 1is completed.

T defined in Example (3.23):

Consumer 2 Reduces his

B. The Securities Markets are Open, and Net Purchases

Excepting the

special case in which endowments are Pareto-optimal, the following is true in

Consumers possess oligopoly and oligopsony power in the markets;
as a consequence, outcomes are not Pareto-optimal.

There is a wide range of rational (i.e., self-justifying) beliefs
there are many

As a consequence,

rational-expectations equilibria.

the finite Securities Game:
(1)
(i1)
about market thickness.
(111)

There are rational-expectations equilibria in which sunspots do
not matter. There are rational-expectations equilibria in which

sunspots matter.

In this section, we analyze the replication economy = based on the

Securities Game

T -—— in which the number of consumers is arbitrarily large.
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Excepting the special case in which endowments are Pareto-optimal, the

following is true in the limiting Securities Game:

(1) Consumers possess neither oligopoly nor oligopsony pow%r in the
markets. The economy i{s “"competitive,” but since some markets may
be closedlﬂ/, the allocation of consumption goods 1s not
necessarily Pareto-optimal.

(11) There are many rational (i.e., gelf-justifying) beliefs about
which markets are open and which are closed; in fact any prespec—
{fied set of markets can be closed. As a consequence, there are
many rational-expectations equilibria.

(11i) There are rational-expectations equilibria in which sunspots do
not matter (some, but not all, of which are Pareto-optimal).
There are also rational-expectations equilibria in which sunspots

matter (all of which are not Pareto—optimal).

We now give a brief description of the procedure for replicating T.

(For a more completé description of the replication technique, see [161).

Let TV be the v-th replication of T. TY 1s thus the Securities

Game in which there are V (v = 1,2,000 ) consumers exactly like consumer

h (h = lyeee,0) from the original Securities Game T. Hence, we say that

there are Vv consumers of type h (h = l,ee.,n) in TV. (Notice that

Tl = T.) A strategy vector Y for the game TV is given by

~y o ety tEv h=n _ t—v h=n r(£+1)vn
CAE R SCHMIRD N iy Gy 'qh t=1'n=1 € &

In what follows, we focus on symmetric strategy vectors, i.e., vectors I
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with the property

for t,t' =1,...,v and h = l,.¢.,n. Generally, we shall find it convenient
.

to describe a symmetric strategy vector 9 in the smaller space

nﬁr(£+1)n’ namely

~Vo_ v h=n _ ~y ~v, . h=n 2r( 2+1)n
o' = {op Ly = (g €T’ .

This should not cause confusion.

Let {v} denote the sequence (l,eeeyVyone), {TV} the sequence
yees), and (@'} the sequence of symmetric strategies
yees)s We know there is an increasing subsequence {v} of ({v}
with the property that on this subsequence the symmetric strategies 5’ tend
to a limiting strategy, say, 5. Allowing ourselves some carelessness of
notation (since we are imprecise about the subsequence), we describe this
limiting process as EAE G E&r(l+l)n as v + ®,

We consider next the well-behaved case of interior NE in the replicated

Securities Game, TV. From Proposition (3.10), we know that there is an

interior NE strategy ¥ to TV for v=1,2,... . We make the further

xv

claim that there is a symmetric, interior NE strategy @ to T for

v =1,2,.0. » (The proof of this claimll/ requires one modification in our

proof of Proposition (2.23). Consider the mapping which takes the point b

Ar(2+1)vn’

to the point b'. Replace the unit simplex, here with the subset

of symmetric bids from ar(2+Dva
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4.1. Proposition. let SV = (g\l),..., h,...,O vy € ler(“'l)n be a symmetric,

interior NE strategy for the replicated Securities Game Tv, with the

property

kan g v i v

I (b (s)) > € I (g (s)) > &,
k=1 k=1

n v k=n

] oRen'> e, ) (@h(sN” > €,
k=1 k=1

for each v; 1 = L,e00,2; 8 = 1,000,F and some € 0 (and independent of

v). Let Eﬁr(l+1)n be the limit of the strategy vectors (after many
replications).——j

frn

Then the corresponding allocation vector x(0) € R, is also a

~

competitive equilibrium allocation vector for the economy T. (0f course,

%(6) 1is then also a competitive equilibrium allocation for ™V for
voE1,2,000y o)

Proof: Consider AN H@r(1+1)“

a symmetric, interior NE strategy vector
for the game . Considerlggg_consumer of type h. Fix the bids and offers
of all other consumers at their NE amounts. lLet zi(s) be the bid for
commodity i in state S by this single consumer and let h (s) be the
corresponding offer. let zﬁ(s) and ym(s) be (respectively) his bid for
and offer of state—s money. Therefore 7 = (bh,qh) is the nonnegative

value of (z (1),..., (r) z (1),...,2 (r),yh(l),...,yh(r),yh(l),...,yh(r))

which maximizes uh(xh) subject to
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zi(8)lyL(s) + (v=D(ap(s)” + v kzhcq;<s)>“1

T T v T v
z. (s) + (v=1)(b_(s)) + v § (b (s))
h h k#h ©

(xi(s))’ =

(4.2) .

ML) + (=DM )™ + T (@ (s)”]

(1/9) (2280 + (=DM BEEN” + T B(s)”
k#h
for 1 =1, 23 8 = 1,.00,T; h =1, ,N,

Ao T Blen® + (MBI + /v 2]

3 L
I A6 ¢ I ke
=1 1=1 T (@ + D/ N’ + 1/v) 7
k#h
(4.3) m v m v m
) kzh(qk(S)) + ((v=1)/v)(q, ()" + (1/V)y, (s)
+ zh(s) m v m v m - y:(s)
1 (b (s))” + ((v=1)/v) (b ()" + (1/v) 2, (s)
k#h
for s = 1,...,r, and
. I (68(s)¥ + ((v=1)/¥IBEENY + (1/V) yis)
(4.4) z z:(s) - yz(s) k#h — S — S — <0,
s=1 I (g (s))” + ((v=1)/v)(qp(s))" + (1/v) z,(s)
k#h

where ¥ 15 ((LY,eee,(xi(sNY,une, ().

'{E.é}
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Analysis of the System (4.2)-(4.4) establishes that the allocation vector

~ ~.V
(x) is a continuous function of the strategy vector (o) and the inverse

of the "replication number™ V. We know that ((1/v), ;v) > (0,;) and hence

because of this continuity, we have .

2(3%) » x(0).

That 1is, o 1is the utility-maximizing solution to the limiting maximization

problem. Let x = x(0).

Introduce the following notation (where boldface is used to indicate the

components of the limit strategy ;):

=]

[
e
~

[

A
N3
=5
7~
7]
-4

pi(s) = B—r—l-l——— , p(s) = knl ,

i m

k-z-l q (s) kzl q, (s)
(4.5)
m
(s)

and xﬁ(s) = E%%——— - qﬁ(s) .

p (s)

Take the 1imit v + « and substitute from Equations (4.5) in the System

(4.2)-(4.4) to yleld:

(4.6) xi(s) = zp(e)/p'(s)
£ . A
(4.7) ] 2 ¢ ] ple) wl + xP(o) ,
j=1 =1
| 1w
r
(4.8) I p(s) mp(s) < O
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Substituting Equation (4.6) into Inequality (4.7) and recopying Inequality

(4.8), yields the following system:

L L
Y pj(s) xi(s) < 1 pj(s) mi + x:(s) .
i=1 j=1

(4.9 for & = l,es.,r and

r
5 pr(s) XE(S) < 0

s=1 -

for h=1,...,0. We recognize the System (4.9) as the constraints faced by
coﬁsumer h in an (Arrow) securities—market competitive equilibrium (which is
{ndeed a competitive equilibrium for the economy T). Here pj(s) is
interpreted as the competitive price of commodity j on the state — S (spot)
commodity market, p™(s) 1is the price of security s (or the price of state-
s dollars), and x:(s) is consumer h's purchases of state-=s dollars.
Since € > 0 1is independent of v, we have that the prices are well

defined and satisfy the inequalities
pj(s) >0 for J = 1l,e.0)2 and 8 = l,eee,T,
pm(s) >0 for 8 = lyeee,Te

It only remains to show that in the limit, all materials balance. Since we

have

T e - T @
k=1 k=1
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for J = 1l,000,2, 8 = 1,..ce,T and each v it follows that

n n
= 3
kzl % kzl & o

[ 3

for § =1,.0.,4 and s = 1,...,T. Using Definitions (4.5) yields

n
k=n z bE(s) n
m k=1
xk(S) =
1

[ !

k P(s) k=1

We have shown that Gv + o and that ;v » x where ; is a competitive-
equilibrium allocation for the economy T. Because ¢ > 0 1s independent of

v, we have that in this competitive equilibrium all markets are open. (|

We turn to the analysis of the limiting economy in which some markets are
closed. Remember, commodity market 1 in state s is said to be closed if
k=n i =

) bk(s) = 0, which implies | qk(s) = 0. Security market s 1is said to
k=1 k=n k=1 k=n
be closed if bE(s) = 0, which is consistent with Y q(s) = 0. There

k=1 k=1 ©

are (&+1)r trading posts if we count the commodity markets separately for
each state. Any subset of these (2+1)r markets can be prespecified to be
closed and there is a NE to TV consistent with their closure. Let C(s) be
the set of closed commodity markets in state-s. Let C(m) be the set of

closed security markets. Then, if C is the set of closed markets, we have

C=0C(l) VU ... U C(8) U ... C(r) V C(m).

4.10. Proposition. Let Ve E&r(l+1)n be a symmetric NE strategy for the

replicated Securities Game ?v, with the property that some prespecified set

of markets is closed. let T € nﬁr(2+1)n be the limit of the strategy

~

\Y
vectors O .



-58~-

Then, the corresponding allocation vector %(o) 1s also a competitive-
equilibrium allocation vector for the economy T but with some markets
(including the prespecified markets) closed.

Furthermore, for each T, there exist {gv} with the property that in

the 1imit the prespecified markets are closed but all other markets are open.

Proof: The proof is parallel to the one given for Proposition (4.1)., It is

obvious that there exist NE 5Y with the prespecified set of markets C

closed. A simple extension of Proposition (2.23) yields that for each v
there is a NE with the properties that markets in C are closed and all other
markets are open. An extension of the proof of (2.23) (see also Peck and
Shell [13]), yields these markets can be uniformly open with offers and bids

bounded above some € > 0 (independent of v). (.

There is always some limit allocation which is a Nonsunspot Competitive-
Equilibrium allocation for the economy T. There is nearly always some limit
allocation which is a Sunspot Competitive Equilibrium allocation for the

economy defined by ?, but in which some markets are closed. This is shown

in the next proposition.

4.11. Proposition. (1) For each Securities Game T, there is always a

limiting allocation %(0) which is a Nonsunspot Competitive Equilibrium

allocation. (i1) For each Securities Game T 1in which the initial allocation
of resources is not Pareto-optimal, there is a limiting allocation ;(5)
which is a Sunspot allocation and is competitive with respect to the set of

open markets.

Proof: Part (i) follows from Proposition (4.1) and the fact that with all



-59-

markets open a competitive gllocation mst be a (Pareto—optimal) Nonsunspot
allocation.

Part (ii). Prespecify that all securities markets are closed and that in
some state s' all commodity markets are closed. It follows from ,Proposition
(2.23), that there is a NE to T satisfying the above specification and also
having the property that all commodity markets are open in some state s # s'.
By Proposition (2.20), we know there is some h with the property
(xh(S))v # (xh(s'))v for each v, since w {s not Pareto-optimal. Choose
offers in state s to be independent of v (e.g., (qh(S))V =y for each V)
so that in the limit, markets in state S remain open and hence in the limit

xh(s) # xh(s'). Using Proposition (4.10) completes the proof of Part (11).12/

[

4.12. Remark. The persistence of Sunspot Equilibria as the economy becomes

large might come as 3 surprise to readers of the Cass-Shell paper [6): Here
market participation is unrestricted; in particular every consumer is "born”
before sunspots are observed. The persistence of Sunspot Equilibria should
come as less of a surprise after reading the Mas—-Colell paper {10], which
provides a description of competitive equilibrium in which some markets are
closed. If we consider "competition” to be a limit of NE as the economy
becomes large, then for the competitive economy it is not necessary to seek an
explanation of why a market is closed. A closed market 1is closed because

economic actors believe it to be closed.

ilg dily
L L8TY moeyl swoil
: 2103 (1) 7389 :Yoous
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Notes

of course, macro—-economists are quite familiar with the general notion of
"market uncertainty”. Indeed, Keynes argued in The General Theory that
~animal spirits” (or “market psychology” or “market uncertainty”) play a
central role in the determination of national income. .

We are currently studying the (stabilizing and destabilizing) effects of
money taxes on imperfectly competitive economies. The version of the
market game adopted here seemS to be especially well suited for the
taxation study.

This specification of the budget constraint places no restrictions on
credit, closely following that of Postlewaite and Schmeidler [14].

This bankruptcy rule ig somewhat arbitrary. However, since in equilibrium
no consumer actually goes bankrupt, the rule allows us to avoid the more
complicated bankruptcy issues. The game is well-defined, but we offer

the following interpretation: The referee punishes the bankrupt consumer
by seizing his remaining endowments and his proceeds from trading, but

the referee "guarantees" the "checks” written by each consumer including
the bankrupts. No consumer (bankrupt or not) offers more than his
endowment of physical commodities, so supply obligations are always met.

The Lagrangian expression (2.12) does not i{nclude multipliers for the
constraints qi < mi . While these constraints can be binding, the

associated multipliers mist always be zeroe. Reducing bids and offers in
the proportions given by the prevailing price ratios brings offers below
endowments without affecting any of the other constraints, while also
maintaining the original consumption and utility levels.

In Dubey and Shubik [8], existence of an interior NE is established for a
variant of this model which has commodity money and liquidity
constraints. Their method of proof does not seem to generalize to our
economy. The proof in Pazner—-Schmeidler [12] might anticipate ours, but
so far we have been unable to locate a copy of their proof.

As on the commodity trading posts, when there are no supplies on a
security trading post, all bids are lost. When there are no bids for a
security, supplies of that security are lost. Hence, in Equation (3.3),
we maintain the convention that 0/0 is O.

Iy the terminology of Cass and Shell [6], this is the case in which

¢t =p. If G 1is not empty, then the model becomes moTe complicated,

but Sunspot Equilibrium allocations are even easier to find. In future

w?rk on the limit of NE as the economy becomes large, we shall allow for
G+ 90, i.e., allow for restricted market participation. We shall also
allow for nontrivial fiscal policies.

Maskin and Tirole [11] have constructed an ingenious example in the
competitive setting of a Sunspot Equilibrium based on imperfectly
correlated signals. (See also [4], in which the Maskin-Tirole example 1is



-61-

extended to noncompetitive settings.) We are currently engaged in
extending the analysis of the present paper to fully incorporate
imperfectly correlated randomness.

For a definition of "competition with some closed markets,” see Mas-
Colell [10, p. 191].
.
This method of establishing the existence of a type-symmetric NE was used in
Dubey and Shubik [7].

For the bids of consumer h 1{in the unreplicated economy to correspond to
the bids of a consumer of type h 1in the replicated economy, we must

n 2

choose the appropriate normalization. If we have | 7§ bi(s) =1,
n £ k=1 j=1
then we must also have ) ) (bi(s))v =1 for each ,

k=1 j=1

Here we construct a Sunspot NE of the limiting Securities Game by closing
all markets in one state. In fact, it will usually be the case that a
Sunspot Equilibrium can be found by closing any subset of markets in
state s (leaving the other markets open) and by closing any other
subset of markets in state s' (leaving the other markets open).
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