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SELECTED ELEMENTARY TOPICS IN THE THEORY OF
ECONOMIC DECISION-MAKING UNDER UNCERTAINTY *

Karl SHELL **

In order to illustrate the (partial equilibrium) theory of consumer behavior to-
ward risk, I begin with an exposition of the Arrow-Pratt theory of risk aversion. '
This theory can be extended quite easily to include a special three-asset {money,
short-term government bonds, and shares of equity) model. The three-asset
model, which is based on unpublished joint research of Albert Ando and my-
self, can be used for developing some fundamental propositions in monetary
theory. I then proceed to the analysis of firm behavior under uncertainty. We
must consider, in analyzing the goals of firm management, the general equili-
brium setting of the firm in both real and financial markets; the notion of
‘contingent-commodity’ is presented in this context. The lectures conclude with
remarks on the applicability of mean-variance analysis and market-line theories
to ‘large’ economies.

For present purposes, let us accept the Von Neumann-Morgenstern axioms
which lead to the expected-utility-maximization doctrine. 2 Let there be n
possible states of nature, s, ..., 8is+- .5 8,, which an individual believes will oc-
cur with respective probabilities, p, seesPpsers Py P; 20 (= 1,...,n) and

n
Z) pi=1.
i=1

The individual’s behavior can then be described as choosing an instrument z
(say, an m-dimensional vector) from some decision set Z (say, a subspace of E™)
$0 as to maximize

i=n

E pUzs),
i=1

* Preparation of these lecture notes was partially supported by National Science
Foundation Grant GS-2421 to the University of Pennsylvania.

** Professor of Economics, University of Pennsylvania.

! In preparing this lecture, I owe enormous debt to Kenneth Arrow [1]. See, esp., ch. 3.
I also had access to a round-table survey prepared by Alvin Klevorick for the Boulder Meeting
of the Econometric Society, August, 1971, My colleague, Stephen Ross, provided useful
comments,

2 See, e.g., Arrow 1], chapter 2.
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where U(z; s;) is utility when state of nature 5; occurs and decision z has been
taken. For simplicity, assume a static (or one-period) model in which ex-post
(after Nature’s di is cast) utility depends solely upon ex-post wealth, W, and

let U(WA denote utility of wealth, or end-period consumption. If wealth, or
end-period consumption, is always desirable, then its marginal utility is positive,

UW)>0for 0< W< oo,

. Professor Arrow takes the view that the generalized St. Petersburg paradox
implies that a proper specification includes the assumption that

lim UW)and lim U(W)

exist and are bounded. The boundedness argument has never been convincing

to me, but we shall have no need to use that assumption here. Purchase of fire
insurance and the like, on the other hand, does suggest that individuals are
willing to exchange (at fair odds or even somewhat less favorable than fair odds)
‘risky wealth’ for ‘certain wealth’. Abcrrations such as gambling aside, this sug-
gests the specification of a strictly concave utility function; i.e., marginal utility
declines with wealth, or

U"(W)<0for 0< W< oo,

Individuals possessing utility functions with negative second derivatives are said
to be risk averse. 1f U"(W) = 0, the individual is risk neutral. If U"(W) > 0, the
individual prefers risk.

Arrow offers two basic measures of risk aversion:

Absolute risk aversion: 1 ,(W)=-U"(W)/U'(W)
and Relative risk aversion: ng(W) = —WU"(W)/U'(W).

Remember that from Von Neumann-Morgenstern theory the utility function,
U(+), is defined only up to positive linear transformation. Multiplying U(W)
by a positive constant also multiplies U ‘(W) by a positive constant. The numeri-
cal value of U"(W) is then of no significance, although its sign is of fundamental
importance. Notice that addition of a positive constant to U(W) has no effect
on U'(W) or U"(W) and that multiplying U(W) by a positive constant has no
affect on the ratio U'(W)/U"(W). Therefore, 14 (W) and ng (W) are sensible
measures of risk aversion.

Following Arrow and Pratt, we can study the application of Bernoulli-Von-
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Neumann-Morgenstern theory to the choice between a risky asset (say, shares
of equity) and a riskless asset (say, ‘money’). It should be noted that in the
intertemporal model where the individual simulultaneously makes portfolio
decisions and consumption-saving decisions, it is unlikely that money can serve
as the riskless asset — if indeed any asset can serve that role.

Define

X: random variable denoting rate of return on risky asset;

A: initial wealth;

a: investment in risky asset;

m = A—a: investment in riskless asset;

W: final (ex-post) wealth.

Then

W=A4+aX. n
The mathematical problem is to perform the following optimization:

max ElU(A +aX)], (2)
ae[0,A]
where E'[-] is the expectation operator. The above formulation assumes that
the riskless asset bears no return. Expression (2) can be generalized by inter-
preting A as the ex-post final wealth if the individual specializes to cash, a = 0.
In practice corner solutions, a = 0 or a = A, are of great interest but for con-
venience, let us restrict ourselves to interior maxima, where from (2),

E[XU (A +aX)} = 0. 3)

We want to investigate the behavior of risky investment with respect to initial
wealth. Differentiating in (3) yields

da _ E[U"(W)X]

U~ TEUWX )
The denominator of the RHS of (4) is obviously negative, so we can write
sgn (da/d4) = sgn {E[U"(W)X]}. (%)
Note that if absolute risk aversion, n 4 (W), is decreasing in W, then

n,(4 +aX)§nA(A) for X20.
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By definition of n,(*),
U'(4 +aX)2 _nA(A)U'(A +aX)asX 2 0.

Therefore, multiplication by X yields
XU"(4 +aX)> —XnA(A)U'(A +aX).

Taking expectations, yields

E[U"A +aX)X] = —nA(A)E[U'(A +aX)X] =0,
from (3). Hence from (5),

(da/dA) > 0if n ((*) is decreasing in W. (6)

This is a reasonable result: with decreasing absolute risk aversion, risky invest-
ment is not an inferior good. Arrow also calculates, e, 4, the elasticity of de-
mand for cash balances

e = dlogm
mA dlogA’
Since m = A—a,

e _1='_4_@_1=:‘1(1 _E"L)_]
mA mdA m d4
_(A—m)—A(da/dA)

— .

But from (4) the above is equal to

(A-m)E[U"(W)X?] + AE[U"(W)X]
mE [U" (W)X ?] :

Putting m = 4 — a, we get

E[U"(W) (aX? + AX)] _E[X(@+AX)U"(W)]
mE[U"(W)X?] mE[U"(W)X*] ~

Rewriting yields

- L EIXWUT)

mA mE[U"(W)X?%] ~ 7

e
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Therefore,

Cq =1 iff E[XWU"(W)] <0. ‘ (8)
From (8) it is straightforward to show that if relative risk aversion, ng(*), in-
creases with W, then e, 4 = 1. Arrow points out that this is in accord with em-
pirical studies of demand for money. Monetary theorists, however, probably
place a greater emphasis on transactions demand rather than this liquidity pre-
ference component. I shall have more to say on this when the Ando-Shell three-
asset model is presented, but before that I shall pursue some further implications
of Arrow-Pratt theory.

One useful exercise is to consider the effects of shifts in the distribution X.
Let 6 be a shift parameter and denote the dependence of X upon 6 by X(0).
Rewrite (3) as

E{X@O)W'[4 +aX(6)}}=0. ©)
Differentiate with respect to 8,
E{U"(W)[a(dX/d0) + X(6)(da/d6)] X(®
+U'(W)(dX/do)} = 0
or
E{[aU"(W)X(6) + U'(W)) (dX/d6)}
+(da/dO)E (U"(W)[X(6)] *} = 0. (10)
From (10),
sgn (da/df) = sgn E({[aU"(W)X(9) + U'(W)] (dX/dO)}). (11)
Consider first, a shift of the form

X(0)=X+0so dX/do=1. (12)

EU’> 0, sgn (EaXU") = sgn (EXU") and is therefore by (5) equal to sgn
(da/dA). Therefore, demand for the risky asset increases with 6 if (da/dA4) > 0.
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Next consider shift of form
X@)=(1+0)Xso dX/do=X. (13)

For § = —t, this is the case of an income tax with complete loss offset (tax rate:
t>0). From (11)

sgn (da/d6) = sgn {EaX2U" + EXU'}. (14)

The second term on the RHS of (14) is zero by first-order condition (3). There-
fore da/df < 0 or (da/df) > O (tax with loss-offset). In general, it can easily be
shown that

or a(f) =3(1°T'%“). (15)

a
) =137

Problem for students: Rework expression (15) for case where there is no
loss-offset. Calculation will not be so neat. :

I now turn to the ‘macroeconomic’ three-asset extension that I promised
earlier *, Initial wealth, A, is given. Individuals distribute their initial wealth
among risky assets (equities and long-term bonds), C, short-term government
bonds (or time deposits), B, and money (cash and demand deposits), M.

C+B+M=A. (16)
Define

p: arandom variable, rate of return on risky asset;

r: rate of return on bonds (nonstochastic for short-term governments);

v. arandom variable, rate of general price inflation;

T(M): ‘transaction cost’ which decreases as money holdings increase,

T'(M) < 0, more on this later;

W: a random variable, end-period real wealth.

We assume — as a first-order approximation — that intra-period expenditure
is given independent of economic variables, but that the cost of transacting,
T(+), depends on the ‘average level of intraperiod money balances’. An inven-
tory-theoretic story can be told 4 /z Baumol and Tobin yielding the usual saw-
tooth profile of money balances through the period. With care, we can con-
ceptually define M as ‘effective average money balance’.

3 This presentation here is a highly condensed version of the Ando-Shell argument. This
footnote is included to protect Ando.
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Further define:
¢=C|A b=BJ/A andm =M/A,
so that
c+tb+m=1. a7

End period wealth — available for consumption, or for consumption and saving
in more complicated models — is

W=cA(l +p —v) +bA(1 +r —v) + mA(l —v) — T(mA). (18)
The problem is to study interior maxima to ¢ = EU(W) subject to eq. (17).
Substitute 1—c—b for m in (18); the first-order condition 9%/db = 0 can be
written as

E{U' (W)A[(14r-v) — (1-9) + T'(1—c-b)4)]} = 0
or

E{U'(W)A[r+T'(M)]} = 0. (19)
But r and M are non-stochastic, so the LHS of (19) can be factored,

E{U' (W) A[r+T'(M)] = 0. (20)

Since initial wealth and marginal utility are positive, first-order condition (20)
implies that

r=—T'(M). 1

Therefore the short-rate determines (uniquely if 7" is of one sign) holdings of
cash balances, M.

There is another first-order condition to contend with. Setting a®/dc =0
yields

E{U'(WA[(—1) + (14+p—v) + T'(1—c—b)A4)]} = 0. 22)
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Eq. (22) can be rewritten with the help of condition (21) as
E{U'(W)A(p-1)} =0, (23)

where, of course, Ep > rif U" < 0 and all three assets are held. Notice that
condition (23) can be used in applying Arrow-Pratt theory to the extended
model. While from (21) M is independent of the distribution p, (23) yields im-
portant comparative statics theorems about risky-asset demand. In Arrow’s
terminology, set

X=A(p~r)

and apply to the extended model all those Arrow-Pratt theorems that are a
consequence of expression (5).

I have to admit that our transactions cost function, (M), is a very unspecific
black-box, although it has respectable antecedents in the Baumol-Tobin square-
root formula. In general, 7(+) should depend on expenditure which would be
a random variable dependent upon general consumption and investment op-
portunities. If, however, these qualifications can be accepted as of ‘second or-
der’, then the lecture has demonstrated that the demand for money is indepen-
dent of all rates of return except on that asset that dominates money for port-
folio purposes (‘short-term government bonds’). Also, given the supply of mon-
ey, the short-term interest rate is determined independently of expectations of
price level inflation and independently of the supply of Treasury bills (short-term
government bonds).

Production decisions under uncertainty and the general-equilibrium theory
of the competitive firm. If individuals maximize expected utilities based on
subjective probabilities, what goals should the competitive firm pursue in a
risky environment? Inventory theorists have based their arguments on the ex-
pected profit-maximization hypothesis — although, to my knowledge, the
question of where the probabilities come from was never posed. Recent writers
on firm behavior have generalized the goal to that of maximizing expected
‘utility’ of profits, i.e., maximizing the expected value of some concave function
of profits.

On the other hand, the basic general-equilibrium theory of the firm (static,
dynamic, risky, or whatever) posits that firms seek to maximize current value
or equivalently maximize the value on outstanding equity shares. Managers
follow this rule in order (1) maximize the value on their own equity shares, (2)
avoid shareholder rebellion, and most plausibly (3) avoid takeover.

In order to pursue the consequences of the ‘general-equilibrium share-price
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maximization model’, consider a firm that ‘produces’ corn. There are two pos-
sible states of nature: (1) rain and (2) drought. The manager of the firm believes
the probability of rain to be p and of drought to be 1— p-cg is corn output if rain;
cp is corn output if drought. Let me pretend that if corn is planted very deep,

then it flourishes in rain. If planted very shallow it flourishes in drought.

Turn to figure 1. If the manager plants deep, he assures himself of 04 corn
production of rain, but zero production if drought. If he plants shallow, pro-
duction is OB if drought, zero if rain. By planting some of his fields shallow
and some deep, he could achieve any point on the line segment 48 (shown
dotted). There may be advantages to planting at intermediate depths allowing
for a curved production possibility frontier (the solid curve AB). (The pie-shaped
production set is the boundary and interior of ABO.)

If the manager produces for his own comsumption, in the absence of trade
he would choose a point on the PPF (4B) that maximizes

pU(cp) + (1-p)U(cp).
The dashed indifference curve represents the locus of points
pU(cg) + (1-p)U(cp) = B (a constant).

°p
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In autarchy, the manager’s optimal plan is to plant his field so as to harvest
(and consume) OC if rain and OD if drought.

For the general equilibrium theorist, a perfect insurance market is one where
all contingent commodity markets exist and are perfect 4. There are two con-
tingent commodities from our little example that ‘span the states of nature’:
(1) Deliver one bushel corn if rain, zero if drought. (2) Deliver one bushel corn
if drought, zero if rain. Assume that the respective prices of these contingent
claims are ng and 71y,

To maximize the value of the firm, the manager plants his fields to make the
PPF AB tangent to a line with slope (—mg/mp). If rain he produces only OF,
but if drought his production is increased to OF. Even if the manager is the
owner, the value maximizing production plan leads to utility maximization. By
trading at market contingent claims prices his opportunity set is expanded; it
is the triangle OXY. Benefitting from trade, his utility is increased. A higher
indifference curve (drawn in solid) defined by

pUcg) +(1-p)Ulep) = 6> B,

is tangent to the hypotenuse of his (triangular) opportunity set OXY. Con-
sumption is OM if rain, ON if drought. Note that production is at (OFE, OF) no
matter what the manager’s tastes and probability beliefs are. The prices 7 and
p ‘code the market’s beliefs and tastes’.

How is this theory related to the expected profit maximization doctrine?
Obviously, the two yield the same results if and only if

p/(l.p) = "R/"D-

This is not likely to be the general case when individuals differ as to probability
beliefs or if U(*) is a strictly concave function.

Concluding remarks on mean-variance analysis

In several of the other lectures in this volume, analysis will be based on
the Markowitz-Tobin (E, V') or (1, 6) model. It may be worth your while to
attempt to relate that material to the theories presented in this lecture.

How is (E, V) analysis related to the doctrine of expected-utility maximization?
The (E, V) analysis can be thought of as a special case where either (1) the Von
Neumann-Morgenstern utility is quadratic (thus possessing in the large objec-

4 This requirement may be too strong, Professor Stiglitz’s lectures on separation into
mutual funds will examine cases when fewer contingent claims markets are necessary.
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tionable negative marginal utility) and/or (2) the underlying probability dis-
tribution is normal and is thus fully described by the two parimeters u and o.

What about the tangency of the market line with the efficient u—o frontier
— wich implies an optimal portfolio diversification which is independent of
investor wealth, etc.? This argument is, of course, a special case of our general-
equilibrium contingent-claim model described in figure 1.

What are the advantages of the (£, V) model over the more general theory
presented here? I must say that I can see none for theoretical analysis. But the
(E, V) model has been around, is well understood, and relatively well-suited to
computation.

Is there then any sense in which the mean-variance model can be argued to
approximate the behavior of a ‘large economy’? Can the Central Limit Theorem
be of any use here? The answer seems to be yes. My colleague Stephen Ross
[3] has shown that in a single-factor market model with a large number of
securities, individual portfolio behavior is unaltered, and the equilibrium re-
mains intact for general factor models. In particular, as long as the degree of
dependence between anticipated asset returns is not too high, the security-line
equation of the capital-market model will become an increasingly good approxi-
mation as the number of securities becomes large.
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