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THE THEORY OF HAMILTONIAN DYNAMICAL SYSTEMS, AND AN APPLICATION
TO ECONOMICS
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INTRODUCTION

A Hamiltonian dynamical system (HDS) naturally arises in the
standard control problem involving optimization over time. On
this ground alone, a systematic study of the basic structure of
the general HDS should be extremely useful for mathematical
control theory. Applications of HDS theory extend beyond models
involving optimization. The classic studies of such systems were
motivated by problems in celestial mechanics. While much of the
analysis of my lecture will be motivated by the normative
(optimizing) model of macroeconomic growth, I will show in
passing how HDS theory may be useful in analyzing many positive
("nonoptimizing") models of macroeconomic growth.

The basic approach of this lecture is to relate stability
properties of the HDS to the geometry of the underlying Hamil~
tonian function (HF) generating that HDS. For simplicity, the
present analysis 1is restricted to continuous-time models, al-
though the Hamiltonian approach is equally powerful in analyzing
discrete-time models.

The emphasis of this lecture on the geometry of the HF as an
important determinant of (global) stability of the HDS is drawn
directly from a joint paper with my colleague David Cass [4],
which will appear in the Journal of Economic Theory. All of the
basic propositions -- i.e., those relating global stability to
Hamiltonian steepness -- are from the Cass-Shell article.




190 KARL SHELL

LOCAL ANALYSIS FOR THE TIME-AUTONOMOUS HAMILTONIAN FUNCTION:
i THE CLASSICAL THEOREM OF POINCARE

Let £(t) and n(t) be m—dimensional vectors dependent upon
time t. The HF H(E(t), n(t))is said to be time-autonomous, since
| H depends on t solely through £ and n. H({,n) is said to gene~-
rate the HDS

. dH . 3H
E = - 5;" n°= 3E ° L

where here 3H/3E and 3H/9n are vectors of partial derivatives
(later, vectors of generalized gradients) and # and £ are vectors
of time derivatives. I suppress the dependence on t whenever
confusion will not arise. Assume that the above HDS possesses a

rest point, which can be chosen as the origin without loss of
generality. Then

3H(0,0) _ . _ 3H(0,0)
T 0 T (2)

I follow the approach of classical mechanics; see, e.g. [101,
especially pp. 76-8l1. Make a linear approximation to the HDS
about the rest point. If A is a characteristic root of the as-

sociated linear system, then it must satisfy the characteristic
equation

H, + I H
ng nn
= 0, 3)
H - A
£€ Hep =M
where Hgg, and Hyr are m x m matrices of cross partials
evaluated at and I is the m x m identity matrix. I as-

sume that H(:) is twice continuously differentiable. Notice the
abundant symmetry in the characteristic equation (3) for the
linearized HDS. Hpp = H ', and Hep g» Where
primes denote matrix transpos?tion Substituting gn 3),

transposing the determinant on the left, and interchanging rows
and columns yields

- A H
HnE I nn

= 0. (4)

HEE HEH + AI
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Comparing (3) and (4) gives Poincaré's result: If A is a
root to the characteristic equation for the linearized HDS, then
~-X is also a root.

This Poincaré theorem is at once extremely simple and also
suggestive of deep fundamental results. If we could rule out
roots with zero real parts, we would then have established a
saddlepoint result for the linearized HDS in 2m-dimensional
(g, N phase space: In the neighborhood of the rest point (0,0),
the manifold of (forward) solutions tending to the rest point as
t ++ = is of dimension m, and the manifold of (backward) solu-
tions tending to the rest point as t + - « is also of dimension
m.

Since zero real parts would seem to be something of a mathe-
matical accident, it would seem apparent that the local saddle-
point property is generic in the sense of global analysis. That
is, HDS's possessing this property are dense in the class of
all HDS's possessing a rest point.

I know of no formal proof that the saddlepoint property is
generic. There are even some reasons that might make one
skeptical of the validity of saddlepoint genericity: (1) Since
the A's are solutions to a polynomial equation, "outcomes' are
further constrained; e.g., if A is a complex root, then its
complex conjugate is also a root. (2) Somehow, real-life
planetary motion seems to be able to sustain itself.

Another approach suggested by examples from economics (see
[17,18,19]) is to seek sufficient conditions in terms of the
geometry of the HF that ensure the saddlepoint property. The
Poincaré result requires little in the way of restrictions
on the HF, viz., the existence of a rest point and twice con-
tinuous differentiability. (It should be noted that somewhat
stronger conditions may be needed for the saddlepoint property
to carry over from the linearized version to the HDS itself.)

Rockafellar [12], in an important mathematical paper stimu-
lated by problems in economics (cf., [17]), establishes —-- among
other things -- a global version of the saddlepoint property for
the case in which the rest point (0,0) is a saddlepoint of the
HF H(E,n) with H(+) strictly convex in £ and strictly concave in
n. Therefore, if the HF is strictly convex-concave and pos-

sesses a saddlepoint (0,0), then the HDS possesses a saddlepoint
(0,0).

In optimal economic growth, the HF is interpreted as the
maximized value of socially imputed net national product with £
as output prices and n as input stocks. It is thus natural to
assume at least convexity in prices £ and concavity in stocks n.
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Moreover -- although various schools of economics seem to
" "rediscover" this in particular examples —- it is quite natural
for a competitive dynamical system to possess this saddlepoint
property in phase space. Such intertemporal development is
shown in the phase-plane of Figure 1, wherem = 1.

From Figure 1, we see that for each initial endowment n(0)
there exists at most one (locally, exactly one) price £(0) for
which (£(t),n(t)) » (£*,n*), the rest point, as t + =, Errant
paths -- those not tending to (E*,n*) —- seem to violate addi-
tional conditions for optimality, such as nonnegativity of prices
or asset-market clearing, or some transversality condition, or
bounded value of capital. Such arguments have, however, only
been firmed-up for special cases (see, e.g., [5,17,19]) and seem
to rely for proof on topological properties appropriate to the
Phase-plane but inappropriate for higher dimensional phase
spaces.

Output Price

Input Stock

FIGURE 1
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In what follows, I shall report on the Cass-Shell approach
to Hamiltonian dynamics. We start with the geometry of the
Hamiltonian function, but rely on global steepness properties
rather than measures of convexity and concavity. We also jump
over the step of studying the dimensionality of the stable
manifold. Instead, we add nonnegativity and transversality
conditions to our definition of the HDS and investigate the
global stability of the rest point (£*,n*), or more naturally
the global stability of the "real" (nonprice) component, n*.
Furthermore, we are able to accommodate an important class of
non-time-autonomous HDS. Before turning to the stability analy-
sis, I must generalize our notion of the HF and the HDS it
generates.

THE HAMILTONIAN FUNCTION: AN ECONOMIC REPRESENTATION

Not only does a Hamiltonian function generate a Hamiltonian
dynamical system which is convenient for dynamic economic analy-
sis, but the HF is also an interesting construct for static
economic analysis. Changing notation from the previous sec-
tions, let k(t) be an m-vector of capital stocks at time t, let
z(t) be an m-vector of net investment goods output at time t so
that k(t) = z(t), let q(t) be an m-vector of present prices of
investment goods at time t, let c(t) be (scalar) consumption or
"instantaneous social utility" at time t, and let p(t) be the
(scalar) present price of consumption at time t. Given
(p,q) 2 0, the present value of net national output is derived
by maximizing pc + qz subject to technology and endowments of
capital k, and endowment of the sole (for convenience) fixed
factor, £, (interpreted as labor). If all capital stock inputs
are feasible, this static optimization yields an HF (interpreted
as the present value net national output)

H(p,q,k,L)

defined over the nonnegative orthant {(p,q,k,&) : (p,q,k,2) 2 0}.
For convex technologies with free disposal, this convenient
Hamiltonian representation of technology is fully equivalent

(and often easier to work with) than the usual input-output set-
theoretic representation or the related production-frontier
representation. The HF has the following properties:

(a) H 1s nondecreasing in p and £;

(b) H is linear homogeneous in (p,q). Without loss in
generality, since convex technologies can always be
described as constant-returns technologies after
introducing a fictitious commodity, we also assume that
H is linear homogeneous in (k,%);
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(¢) H is convex in (p,q) and concave in (k,%);

(d) The generalized gradients satisfy
' 3H

(i) a(P’q) - (C,z) and

(11) at least for (p,q) 2 O,

oH
3(k,2) (r,w), where by duality, r is the vector

of competitive rental rates and w is the wage rate
on labor.

For further discussion of the static aspects of the above HF,
H(p,q,k,%), see Cass [3], Lau [7], and Cass-Shell [4].

GENERALIZED HAMILTONIAN LAWS OF MOTION

In terms of the HF, H(p(t),q(t),k(t),L(t)), our generalized
HDS becomes

k(t) = IH(p (t),q(t),k(t),2(t))

3q(t) ’
3H(p(t),q(t) k(t),2(t)) ®
* H t),q(t),k(t),2(t
Q(t) - - ak(t) .

-Por steady state analysis to apply, &(t) must grow at an asymp-
totically constant rate. Without further loss of generality, I
can set 2(t) = 1. Of course, initial capital stock endowments
are exogenously specified so that k(0) = k,. If (p(t),q(t)) = 0,
then (5) is consistent with the usual perfect-foresight compe-
titive asset-market clearing equations from economics.

OPTIMAL ECONGMIC GROWTH WITH POSITIVE DISCOUNTING

As an economic example, I propose to investigate the problem
of maximizing social welfare as given by

o0

6 c(t)e-ot de, . 6)

where p > 0 is a constant scalar. (I could include the limiting
case p = 0, but although analytically simpler, it would open
up various time-consuming caveats about boundedness of the
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criterion functional and transversality, etc. Instead see [4].
Maximization is subject to technological constraints, initial
endowments, kg, and labor availability, 2(t) = 1. To my know-
ledge, for all cases in which the Maximum Principle has been
worked out, HDS(5) is necessary for optimality. Similarly,

I take as a necessary condition that

p(t)/p(t) = -

or without loss in generality that

-pt
p(t) = e | (7
I must also add a transversality condition:

lim q{t)k(t) = O. (8)

t > o

In discrete-time Weitzman [20] has shown that (8) is necessary
for optimality. I suspect that techniques similar to those
developed in [4] should be useful in establishing the necessity
of (8) in continuous time, but Cass and I have not verified
this conjecture.

It will be convenient to switch from present prices to cur~
rent prices. Define Q = q/p and H(Q,k) = H(1,Q,k,1) = H(1,q/p,k,1)
The system (5),(7), and (8) can be written as

?—Hig\('zﬁl,kw)=k

k o

q = - ML 4 o9, q(0) > o, (9

1im Qe Ptk(t) = 0.

t > o

GLOBAL STABILITY OF OPTIMAL ECONOMIC GROWTH

I assume here that there exists a rest point, (Q*,k*), to
HDS(9). For a proof of existence, see [4].

I have promised to provide geometrical conditions on the
HF, H(Q,k), which will ensure global stability of the steady
state capital stock, i.e., that ensure 1lim k(t) = k*. The
too

stability condition, which is due to Cass-Shell [4], is
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Stability Assumption: For every € > 0, there i8 a 6§ > 0

such that [lk-k*|| > e = | (s)

(Q_Q*)Eﬂﬁgakl - Elﬂﬁgsglzﬂgikl(k_k*) > 6 = p(Q-Q%) (k-k¥).

(S) 1s the basic stability assumption, although for economic
problems attention is further restricted to HF's which are in
addition convex in Q and concave in k, so that

(Q-Q*)égﬁgakl._ Elgiggﬁlzﬂgikl(k_k*) > 0. (10)

Even if the e-~6 bounds in S are removed, the weakened con-~
dition still ensures uniqueness of k*, If (S) is strengthened in
the obvious way, it will provide for the uniqueness and global
stability of the full rest point, (Q*,k*).

(S) is a "'steepness" requirement on the HF, looking from any
point, (Q,k) with k # k* to (Q*,k*), steepness must be bounded
above that given by the quadratic form - p(Q-Q*) (k~-k*).

Cass-Shell [4] provides more motivation of condition (S) --
both from the economic and geometric points of view. Here, I
merely remark that (S) can be thought of as a generalization of
the bounded-value-~loss condition of Radner [11] and reduces to
Radner's condition when p = 0.

Condition (S) immediately suggests the choice of Lyapunov
valuation function for stability analysis:

V o= (Q-Q%) (k). | 1)

Time differentiation in (11) and application of (10) yields:

de Pty /ae A ¥ - pv b
- (qron 2R _ BIHQRp0 i (12)
-p (Q-Q*) (k-k*) ?
= (Q-Q*)B—H%’%‘)— - a[H(Qsi)"’Q*kl(k-k*)
s 0. J

The transversality condition (9) requires that
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lim Ve ™% < 1im [Qe %k + qre PTkx] = 0 (13)

t>o too

and hence, V < 0 and 1lim V = V* < 0,

to -

Proof of global stability. Suppose that lim k(t) = k*
t oo
were not true. Then for some € > 0 there would be a sequence

of points {t,} such that ”k(tj)—k*ll > 2e. Then if we assume

J
uniform continuityl of k(t) on the halfline [0,®) ~-- there would

also have to be a sequence of intervals {[t ,Ej]} such that

Ej_Ej > At > 0 and ||k~k*|| > € for t [Ej ]. From (12), it

,t
h
‘follows that

vV = (Q_Q*)aﬂgaﬁ)_ - B[H(Q’l;})g-pq*kl (k-k*) + pV

so that (S) implies there is a § > 0 such that

V(t) > S for t = [%,Ej].

Hence, for t' sufficiently large, it follows that both

VE - 8 <V(t) < V*

and
V(t) 2 V(") + Z G(Ej-gj) > v(t")
t' <t <t <t
+ [max {] : t:'i_t_jf_\_:jf_t}-min {3 :t':_gj :Ej<_t}]6At

for t L t', which are inconsistent, establishing that a solution
to (9), if it exists, must exhibit stability in the sense that
1im k(t) = k*.

| g

NOTE

lUniform continuity is established in {4].
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