Economics 4905

Financial Fragility \& the Macroeconomy
Fall 2015
Problem Set \#1
Due Monday, September 14, 2015

Money Taxation

Commodity, $\ell=1$, chocolate. 5 consumers, $n=5$:

$$
\begin{aligned}
\omega & =\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}, \omega_{5}\right) \\
& =(100,90,80,10,50)
\end{aligned}
$$

1.

1 Money. Chocolate price of money is $P^{m} \geq 0$.
In each of the following cases, solve for the set \mathbb{P}^{m} of equilibrium prices P^{m} :
(a)

$$
\begin{aligned}
\tau & =\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \tau_{5}\right) \\
& =(1,1,0,-1,-1)
\end{aligned}
$$

(b)

$$
\tau=(10,5,1,-5,-6)
$$

(c)

$$
\tau=(10,8,0,-8,-10)
$$

2.

2 Monies, red dollars R and blue dollars B, with respective chocolate prices of money, $P^{B} \geq 0$ and $P^{R} \geq 0$.

In each of the following cases, solve for the equilibrium exchange rate between B and R. Do these depend on ω ? Give the economic explanation.
(a)

$$
\tau^{R}=(1,1,1,0,0), \quad \tau^{B}=(0,0,0,-1,-1)
$$

(b)

$$
\tau^{R}=(1,1,1,-1,-1), \quad \tau^{B}=(1,0,0,0,0)
$$

(c)

$$
\tau^{R}=(1,0,0,0,-1), \quad \tau^{B}=(2,0,0,-1,-1)
$$

3.

Absence of Money Illusion

Explain the difference between "absence of money illusion" and the "quantity theory of money". Be precise (with symbols).

