Economics 4905 Financial Fragility & the Macroeconomy Fall 2015 Problem Set #2 Due Monday, October 6, 2015

<u>Connections between Futures Market Economy and</u> <u>Money Market Economy</u>

One good per period, $\ell = 1$, two periods, t = 1, 2.

Futures Market:

$$\max \mathbf{u}_h \left(x_h^1, x_h^2 \right)$$

st. $p^1 x_h^1 + p^2 x_h^2 = p^1 \omega_h^1 + p^2 \omega_h^2$

Equilibrium is a price vector (p^1, p^2) such that

$$\sum_{h} x_{h}^{t} = \sum_{h} \omega_{h}^{t} \text{ for } t = 1, 2.$$

Define the interest factor R and the interest rate r in terms of the equilibrium commodity prices (p^1, p^2) .

Money Market:

$$\max u_h \left(x_h^1, x_h^2 \right)$$
s.t.
$$p^1 x_h^1 + p^{m^1} m_h^1 = p^1 \omega_h^1$$

$$p^2 x_h^2 + p^{m^2} m_h^2 = p^2 \omega_h^2$$

Equilibrium $(p^1, p^2, p^{m^1}, p^{m^2})$ such that

$$\sum_{h} x_{h}^{t} = \sum_{h} \omega_{h}^{t} \text{ and } \sum_{h} m_{h}^{t} = 0 \text{ for } t = 1, 2.$$

1.

Prove that in equilibrium $p^{m^1} = p^{m^2} = p^m \ge 0$. This is a no-arbitrage-property result.

2.

Show that if, (x_h^1, x_h^2) , h = 1, ..., n solves the futures market problem, it also solves the money market problem.

3.

Show that if, (x_h^1, x_h^2) , h = 1, ..., n solves the money market problem with $p^m > 0$, then it also solves the futures market problem.