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Introduction

I Bryant (1980) and Diamond and Dybvig (1983): �bank runs�

in the post-deposit game

I Peck and Shell (2003): A sunspot-driven run can be an

equilibrium in the pre-deposit game for su¢ ciently small run

probability.
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Introduction

I For the 2-depositor banking model, the optimal contract is

de�ned by c �the withdrawal of the �rst in line in period 1.
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Introduction

I Shouldn�t c�(s) become more conservative (i.e., strictly

decreasing) in s before it switches to the best run-proof

contract?

I If yes, in which economies will we have this property and in

which economies is c�(s) a step function?

I These issues are important to banks and regulators. Also

important to the theory of SSE.

I Instead of relying solely on numerical examples, we provide

the global comparative statics for this economy.
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The Model: Consumers

I 2 ex-ante identical vNM consumers and 3 periods: 0, 1 and 2.

I Endowments: y

I Preferences: u(c1) and v(c1 + c2)

u(x) = A
(x)1�a

1� a , where A > 0 and a > 1.

v(x) =
(x)1�b

1� b , b > 1.

I Types are uncorrelated (so we have aggregate uncertainty.):

p
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The Model: Technology

I Bank Portfolio:

t = 0 t = 1 t = 2

�1 1 0

�1 0 R

I Consumer storage option

6 / 29



The Model

I Sequential service constraint (Wallace (1988))

I Suspension of convertibility.

I A depositor visits the bank only when he makes withdrawals.

I When a depositor makes his withdrawal decision, he does not

know his position in the bank queue.

I If more than one depositor chooses to withdraw, a depositor�s

position in the queue is random. Positions in the queue are

equally probable.
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Post-Deposit Game: Notation

I c 2 [0, 2y ] is any feasible banking contract
I bc 2 [0, 2y ] is the unconstrained optimal banking contract
I c� 2 [0, 2y ] is the constrained optimal banking contract
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c

early

I A patient depositor chooses early withdrawal when he expects

the other depositor, if patient, to also choose early withdrawal.

[v(c) + v(2y � c)]/2 > v [(2y � c)R ]

I Let cearly be the value of c such that the above inequality

holds as an equality. cearly is the best run-proof c .
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c

wait

I A patient depositor chooses late withdrawal when he expects

the other depositor, if patient, to also choose late withdrawal.

(ICC)

pv [(2y � c)R ]+ (1�p)v(yR) � p[v(c)+ v(2y � c)]/2+(1�p)v(c).

I Let cwait be the value of c such that the above inequality

holds as an equality.
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Post-Deposit Game
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Post-Deposit Game

I cearly < cwait if and only if

b < minf2, 1+ ln 2/ lnRg

I When b and R satisfy the above inequality, bank runs matter

in the post-deposit game for c 2 (cearly , cwait ].
I When b and R don�t satisfy the above inequality, cearly

� cwait , which implies that any implementable allocation is
strongly implementable; hence bank runs do not matter.
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Pre-Deposit Game

I Whether bank runs occur in the pre-deposit game depends on

whether the optimal contract c� belongs to the set

(cearly , cwait ].

I To characterize the optimal contract, we divide the problem

into three cases depending on bc , the contract supporting the
unconstrained e¢ cient allocation.

I bc � cearly (Case 1)
I bc 2 (cearly , cwait ] (Case 2)
I bc > cwait (Case 3)
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Impulse parameter A and the 3 cases

I bc is the c in [0, 2y ] that maximizes
cW (c) = p2[u(c) + u(2y � c)] + 2p(1� p)[u(c) + v [(2y � c)R ]]

+ 2(1� p)2v(yR).

I

bc = 2y
fp/(2� p) + 2(1� p)/[(2� p)ARb�1]g1/b + 1

.

I bc(A) is an increasing function of A.
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Parameter A and the 3 Cases

I Neither cearly nor cwait depends on A
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Example

I The parameters are

a = b = 1.01; p = 0.5; y = 3;R = 1.5

I We see that b and R satisfy the condition which makes the set

of contracts permiting strategic complementarity non-empty.

We have that cearly = 4.155955 and cwait = 4.280878.

I A1 = 6.217686 and A2 = 10.277988.

I If A � A1, we are in Case 1; If A1 < A � A2, we are in Case
2; If A > A2, we are in Case 3.
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The Optimal Contract

I

c�(s) = arg max
c2[0,cwait ]

W (c ; s),

where

W (c ; s) =

( cW (c) if c � cearly .
(1� s)cW (c) + sW run(c) if cearly < c � cwait .

and

W run(c) = p2[u(c) + u(2y � c)]
+ p(1� p)[u(c) + v(2y � c) + v(c) + u(2y � c)]
+ (1� p)2[v(c) + v(2y � c)].
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The Optimal Contract
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The Optimal Contract: Case 1

I Case 1: The unconstrained e¢ cient allocation is strongly

implementable, i.e., bc � cearly .
I It is straightforward to see that the optimal contract for the

pre-deposit game supports the unconstrained e¢ cient

allocation

c�(s) = bc .
and that the optimal contract doesn�t tolerate runs.
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The Optimal Contract: Case 2

I Case 2: The unconstrained e¢ cient allocation is weakly

implementable, i.e., cearly < bc � cwait .
I The optimal contract c�(s) satis�es: (1) if s is larger than the

threshold probability s0, the optimal contract is run-proof and

c�(s) = cearly . (2) if s is smaller than s0, the optimal

contract c�(s) tolerates runs and it is a strictly decreasing

function of s.
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The Optimal Contract: Case 2

I Using the same parameters as the previous example. Let

A = 8. (We have seen that we are in Case 2 if

6.217686 < A � 10.277988.)
I c� switches to the best run-proof contract (i.e. cearly ) when

s > s0 = 0.001382358
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The Optimal Contract: Case 3

I Case 3: The unconstrained e¢ cient allocation is not

implementable, i.e., cwait < bc .
I The optimal contract c�(s) satis�es: (1) If s is larger than the

threshold probability s1, we have c�(s) = cearly and the

optimal contract is run-proof. (2) If s is smaller than s1, the

optimal contract c�(s) tolerates runs and it is a weakly

decreasing function of s. Furthermore, we have c�(s) = cwait

for at least part of the run tolerating range of s.
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The Optimal Contract: Case 3

I Using the same parameters as in the previous example. Let

A = 10.4. (We have seen that we are in Case 2 if

A > 10.277988.)
I c� switches to the best run-proof (i.e. cearly ) when

s > 0.004524181.
I ICC becomes non-binding when s � 0.001719643.
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The Optimal Contract: Case 3

I Let A = 11. (PS case)

I c� switches to the best run-proof (i.e. cearly ) when s >

0.005281242.
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The Optimal Contract

I c� versus s and A
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The Optimal Contract

I welfare loss from using the corresponding optimal bang-bang

contract instead of c�(s)
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Summary and Concluding Remark

I The general form of the optimal contract to the pre-deposit

game is analyzed.

I The unconstrained e¢ cient allocation falls into one of the

three cases:

I (1) strongly implementable
I (2) weakly implementable
I (3) not implementable.
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Summary and Concluding Remark

I In Cases 2 and 3, the optimal contract tolerates runs when

the run probability is su¢ ciently small:

I In Case 2, the optimal contract adjusts continuously and

becomes strictly more conservative as the run probabilities

increases.

I The optimal allocation is never a mere randomization over the

unconstrained e¢ cient allocation and the corresponding run

allocation from the post-deposit game. Hence this is also a

contribution to the sunspots literature: another case in which

SSE allocations are not mere randomizations over certainty

allocations.

28 / 29



Summary and Concluding Remark

I In Case 3, the ICC binds for small run-probabilities, which

forces the contract to be more conservative than it would have

been without the ICC. Hence, for Case 3, the optimal contract

does not change with s until the ICC no longer binds.

I For small s, the optimal allocation is a randomization over the

constrained e¢ cient allocation and the corresponding run

allocation from the post-deposit game.
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