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Introduction

» Bryant (1980) and Diamond and Dybvig (1983): “bank runs”

in the post-deposit game
» Peck and Shell (2003): A sunspot-driven run can be an
equilibrium in the pre-deposit game for sufficiently small run

probability.
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Introduction

» For the 2-depositor banking model, the optimal contract is

defined by ¢ — the withdrawal of the first in line in period 1.

Figure 5. ¢ (s) for A=11
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Introduction

» Shouldn’t c¢*(s) become more conservative (i.e., strictly
decreasing) in s before it switches to the best run-proof

contract?

> If yes, in which economies will we have this property and in

which economies is c*(s) a step function?

> These issues are important to banks and regulators. Also

important to the theory of SSE.

> Instead of relying solely on numerical examples, we provide

the global comparative statics for this economy.
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The Model: Consumers

v

v

Endowments: y

v

Preferences: u(c!) and v(c! + ¢?)

(X)lfa
ulx) =A a,whereA>0anda>1.

(x)1-b
=-—— b>1
V() 1-b
Types are uncorrelated (so we have aggregate uncertainty.):

p

v

2 ex-ante identical vNM consumers and 3 periods: 0, 1 and 2.
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The Model: Technology

» Bank Portfolio:

» Consumer storage option
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The Model

» Sequential service constraint (Wallace (1988))
» Suspension of convertibility.
» A depositor visits the bank only when he makes withdrawals.

» When a depositor makes his withdrawal decision, he does not

know his position in the bank queue.

» If more than one depositor chooses to withdraw, a depositor’s
position in the queue is random. Positions in the queue are

equally probable.

~
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Post-Deposit Game: Notation

» ¢ € [0,2y] is any feasible banking contract
» ¢ € [0,2y] is the unconstrained optimal banking contract

» c* € [0,2y] is the constrained optimal banking contract
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early

» A patient depositor chooses early withdrawal when he expects

the other depositor, if patient, to also choose early withdrawal.

[v(c) +v(2y — c)]/2 > v[(2y — ¢)R]

> Let c®™ be the value of ¢ such that the above inequality

holds as an equality. ¢ is the best run-proof c.



wait

» A patient depositor chooses late withdrawal when he expects

the other depositor, if patient, to also choose late withdrawal.

(1CC)

pv[(2y — )R] + (1= p)v(YR) = plv(c) + v(2y — c))/2+ (1 - p)v(c).

> Let c"? be the value of ¢ such that the above inequality

holds as an equality.
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Post-Deposit Game

The post-deposit game has two equilibria: one run and one non-run.

A
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Only the non-run equilibrium exists. Ounly the run equilibrium exists.
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Post-Deposit Game

> ¢y < cWait if and only if

b<min{2,1+1In2/InR}

» When b and R satisfy the above inequality, bank runs matter
in the post-deposit game for ¢ € (™, c"ait].

» When b and R don't satisfy the above inequality, c®™
> ¢"2t which implies that any implementable allocation is

strongly implementable; hence bank runs do not matter.
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Pre-Deposit Game

» Whether bank runs occur in the pre-deposit game depends on

whether the optimal contract c* belongs to the set
(Cear/y Cwait]_

» To characterize the optimal contract, we divide the problem
into three cases depending on ¢, the contract supporting the
unconstrained efficient allocation.

¢ < ¢l (Case 1)

» € (c®rl, cwait] (Case 2)

> "t (Case 3)



Impulse parameter A and the 3 cases

» Cis the c in [0, 2y] that maximizes

W(c) = plu(c) + u(2y — )] +2p(1 = p)[u(c) + v[(2y — c)R]]
+2(1—p)2v(yR).

2y
{p/2=p)+2(1—p)/[2 - p)ARFI[} /b +1'

C =

» ¢(A) is an increasing function of A.
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Parameter A and the 3 Cases

» Neither ¢ nor c*?'t depends on A

Case 2: Unconstrained efficient allocation
is not uniquely implementable.

AL
e N

| | . A
T T l C
ea r]y wait
0 c c 2y
Case 1: Unconstrained efficient allocation Case 3: Unconstrained efficient allocation

is uniquely implementable. is not implementable.
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Example

v

The parameters are

a=b=101;p=05y=3;R=15

v

We see that b and R satisfy the condition which makes the set

of contracts permiting strategic complementarity non-empty.
We have that c®™ = 4.155955 and ¢t = 4.280878.

A; = 6.217686 and A, = 10.277988.

» If A< A;, wearein Case 1; If Ay < A< A;, we are in Case
2. If A> Ay, we are in Case 3.

\4
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The Optimal Contract

| 4
c*(s) =arg max W(c;s),
CE[O,Cwa’t]

where

W(c) if ¢ < el

W(c;s) = —~ ,
(i) { (1—s)W(c)+sWm(c) if c® < c < "t

and
W™ (c) = p*[u(c) + u(2y — ¢)]
+p(1=p)[u(c) +v(2y = c) +v(c) + u(2y — c)]
+ (1= p)*[v(c) +v(2y —c)].
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The Optimal Contract

The post-deposit game has two equilibria: one run and one non-run.

A
r A
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0 c early Cwait o)

Only the non-run equilibrium exists. Ounly the run equilibrium exists.
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The Optimal Contract: Case 1

» Case 1: The unconstrained efficient allocation is strongly

implementable, i.e., € < cearly.

» |t is straightforward to see that the optimal contract for the
pre-deposit game supports the unconstrained efficient
allocation

c*(s) =<

and that the optimal contract doesn’t tolerate runs.
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The Optimal Contract: Case 2

» Case 2: The unconstrained efficient allocation is weakly
implementable, i.e., c® < ¢ < cwailt,

» The optimal contract c*(s) satisfies: (1) if s is larger than the
threshold probability sp, the optimal contract is run-proof and
c*(s) = ¢ . (2) if s is smaller than sp, the optimal
contract c*(s) tolerates runs and it is a strictly decreasing

function of s.
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The Optimal Contract: Case 2

> Using the same parameters as the previous example. Let
A = 8. (We have seen that we are in Case 2 if
6.217686 < A < 10.277988.)

> c* switches to the best run-proof contract (i.e. ¢®”) when
s > sp = 0.001382358

Figure 3. ¢ (s) for A=8
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The Optimal Contract: Case 3

» Case 3: The unconstrained efficient allocation is not

implementable, i.e., ¢ < ¢.

> The optimal contract c*(s) satisfies: (1) If s is larger than the
threshold probability s;, we have c*(s) = ¢ and the
optimal contract is run-proof. (2) If s is smaller than s;, the
optimal contract c¢*(s) tolerates runs and it is a weakly
decreasing function of s. Furthermore, we have c*(s) = c"2't

for at least part of the run tolerating range of s.



The Optimal Contract: Case 3

» Using the same parameters as in the previous example. Let
A = 10.4. (We have seen that we are in Case 2 if
A > 10.277988.)

> c* switches to the best run-proof (i.e. c®™) when
s > 0.004524181.

» ICC becomes non-binding when s > 0.001719643.

Figure 4. ¢ (s} for A=10.4
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The Optimal Contract: Case 3

> Let A=11. (PS case)

» c* switches to the best run-proof (i.e. c®™) when s >
0.005281242.

Figure 5. ¢ (s) for A=11
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The Optimal

Contract

» c* versus s and A
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Figure 6. c‘(s;A)
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The Optimal Contract

> welfare loss from using the corresponding optimal bang-bang

contract instead of c*(s)

Figure 7. welfare loss measured in percentage of endowment x 10
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Summary and Concluding Remark

» The general form of the optimal contract to the pre-deposit
game is analyzed.
» The unconstrained efficient allocation falls into one of the
three cases:
> (1) strongly implementable

> (2) weakly implementable
> (3) not implementable.
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Summary and Concluding Remark

> In Cases 2 and 3, the optimal contract tolerates runs when

the run probability is sufficiently small:

» In Case 2, the optimal contract adjusts continuously and
becomes strictly more conservative as the run probabilities

increases.

» The optimal allocation is never a mere randomization over the
unconstrained efficient allocation and the corresponding run
allocation from the post-deposit game. Hence this is also a
contribution to the sunspots literature: another case in which
SSE allocations are not mere randomizations over certainty

allocations.
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Summary and Concluding Remark

» In Case 3, the ICC binds for small run-probabilities, which
forces the contract to be more conservative than it would have
been without the ICC. Hence, for Case 3, the optimal contract
does not change with s until the ICC no longer binds.

> For small s, the optimal allocation is a randomization over the

constrained efficient allocation and the corresponding run

allocation from the post-deposit game.
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