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Abstract

We perform comparative statics for a 2-depositor banking model de�ned

by the scalar c � the withdrawal of the �rst in line in period 1. In the

post-deposit game, the unconstrained e¢ cient allocation is strongly imple-

mentable, or weakly implementable, or not implementable. Bank runs mat-

ter in the last two cases. In the pre-deposit game the optimal contract c�(s)

is weakly decreasing in the run probability s until it levels o¤ at the best run-

proof c. If the incentive compatibility constraint (ICC) does not bind, then

c�(s) is strictly decreasing in s until it levels o¤at the best run-proof contract.

Then the optimal allocation in the pre-deposit game is never a mere random-

ization over the unconstrained e¢ cient allocation and the corresponding run

allocation from the post-deposit game. If the ICC binds, however, then c�(s)

is constant for small s and the optimal allocation in the pre-deposit game is

then for small s a randomization over the constrained e¢ cient allocation and

the corresponding run allocation from the post-deposit game.

Keywords: bank runs, constrained e¢ cient allocation, deposit contract,

impulse demand, pre-deposit game, post-deposit game, run probability, strate-

gic complementarity, sunspots, unconstrained e¢ cient allocation
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1 Introduction

Bryant (1980) and Diamond and Dybvig (1983) �hereafter DD �introduced

the modern literature on panic-based bank runs. The bank deposit contract

is a mechanism designed to improve the welfare of depositors facing an uncer-

tain impulse demand (i.e., when they become impatient). Since the impulse

demand itself is not directly observable, it is uninsurable in the market. The

deposit contract facilitates some �insurance� by specifying early and late

withdrawals such that they are (Bayesian) incentive compatible: depositors

with di¤erent liquidity needs correctly self-select their types, i.e., an impa-

tient depositor chooses early withdrawal and a patient depositor chooses late

withdrawal if he expects that the other patient depositors will also choose

late withdrawal. Besides the �good�Bayes-Nash equilibrium in which the

depositors self-select, DD show that there is also a �bad� equilibrium, the

self-ful�lling bank run. When a bank run occurs, depositors attempt to

withdraw early independent of their liquidity needs. Bank runs are possible

because, the �good�equilibrium is only weakly implementable rather than

strongly implementable.1 If the patient depositor expects that a bank run

will take place, he will choose early withdrawal.

But given the two equilibria of the post-deposit game, the consumers will

not deposit if they anticipate the run: the bank run will not be an equilib-

rium for the pre-deposit game. DD seem to have recognized this problem

and o¤er sunspots as an answer.2 Peck and Shell (2003) �hereafter PS �

examine sunspot equilibrium in the pre-deposit game.3 There is also intrinsic

1In other words, for a patient depositor, choosing late withdrawal is Bayesian incentive
compatible rather than dominant-strategy incentive compatible.

2In their paper (page 410), DD mention that �This could happen if the selection be-
tween the bank run equilibrium and the good equilibrium depended on some commonly
observed random variable in the economy. This could be a bad earnings report, a com-
monly observed run at some other bank, a negative government forecast, or even sunspots
(emphasis ours).�
Postlewaite and Vives (1987) show how bank runs can be seen as a prisoner�s dilemma-

type situation in which there is a unique equilibrium that involves a positive probability
of a run.

3See also Cooper and Ross (1998) and Ennis and Keister (2006). These two papers
analyze how banks respond to the possibility of runs in their design of deposit contracts
and in their investment decisions. Gu (2011) analyzes noisy sunspots and bank runs.
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uncertainty (as opposed to extrinsic uncertainty in the form of sunspots) in

the PS model: (1) The aggregate number of impatient consumers is uncer-

tain. It could be 0; 1 or 2: This is important because it does not allow the

bank to know with certainty that a run is underway. (2) Sequential service

is taken seriously (Wallace (1988)). When 2 depositors withdraw early, their

positions in the queue are random.

PS show that a sunspot-driven run can be an equilibrium in the pre-

deposit game as long as (1) the post-deposit game has both a run equilibrium

and a non-run equilibrium, and (2) the run probability is below a threshold

level. PS use a 2-depositor example4 to formalize the threshold probability,

and the optimal deposit contract. In the example, the banking contract is

characterized by c which is the withdrawal of the �rst in line in period 1. The

optimal c is denoted by c�(s) which is a function of the exogenous, sunspot

probability s.5 In the PS example, c�(s) is a step function: If the probability

s is less than the threshold probability s0, the optimal contract c�(s) tolerates

runs and is a constant. If the probability s is greater than s0, the optimal

contract is the best run-proof contract.

In this paper, we ask: Why doesn�t the optimal contract become more

conservative as the run probability increases (until runs are no longer toler-

ated)? In other words, shouldn�t c�(s) be strictly decreasing in s before it

switches to the best run-proof contract? If yes, in which economies will we

have this property and in which economies is c�(s) a step function? These is-

sues are important to banks and regulators6. Contracts and regulations could

well be di¤erent based on the economy�s level of fragility or pessimism as in-

dicated by the probability s. To answer this question and keep the analysis

These three papers focus on simple deposit contracts, while PS allows for partial or full
suspension of convertibility.

4The example is in their proof for Proposition 3 (Page 114).
5Like other papers in the literature, PS assume that the bank chooses the contract that

maximizes the ex ante expected utility of depositors. This assumption can be justi�ed
when banks compete for deposits, there is no entry cost for banks, and the depositors are
ex ante identical.

6It is also an important question in the theory of sunspot equilibrium. Some practi-
tioners confuse sunspot equilibrium (SSE) with randomizations over certainty equilibria
(CE). Not all SSE are randomizations over CE. Not all randomizations over CE are SSE.
See Shell (2008).
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tractable, we employ the 2-depositor banking example in PS.7 Instead of re-

lying solely on numerical examples, we provide the global comparative statics

for this economy.

We characterize the parameters for which there are both a non-run equi-

librium and also a run equilibrium to the optimal contract in the post-deposit

game. When there are multiple equilibria in the post-deposit game, the op-

timal contract in the pre-deposit game will re�ect two concerns: (1) main-

taining the non-run equilibrium (i.e., satisfying the ICC) and (2) balancing

the trade-o¤ between the non-run and run equilibria. If the unconstrained

e¢ cient allocation8 is strongly implementable, neither of these two concerns

arise. If the unconstrained e¢ cient allocation is weakly implementable, main-

taining the non-run equilibrium does not play a role and the optimal contract

will be solely determined by balancing the trade-o¤between the non-run and

run equilibria. Hence the optimal contract c�(s) is continuous and strictly

decreasing until it switches to the best run-proof c. The optimal contract is

never a mere randomization over the two allocations from the post-deposit

game.

If the unconstrained e¢ cient allocation is not implementable, at least

when the run probability s is small, maintaining the non-run equilibrium

determines the optimal contract. When it occurs, the optimal contract does

not respond to changes in s since the binding ICC is independent of s: This

is why a larger run probability does not induce a more conservative contract

even when s is small. For small s, the allocation is a mere randomization

over the equilibrium allocations for the post-deposit game.

7Green and Lin (2000), Andolfatto, Nosal and Wallace (2007) and Nosal and Wallace
(2009) analyze a model similar to PS. The main di¤erences among the models are on
the amount of information that a depositor has at the time of making his withdrawal
decision. Ennis and Keister (2009) show that the PS assumptions on marginal utilities
are not necessary for the qualitative results in PS. Ennis and Keister (2009) also study
the Green-Lin model under a more general speci�cation of the distribution of types across
agents. See Ennis and Keister (2010) for a good survey on this part of the literature.

8The unconstrained e¢ cient allocation is the best allocation that can be attained when
agent types (patient or impatient) are observable. In other words, the allocation maximizes
the ex ante expected utility of agents without imposing incentive compatibility, but it is
still subject to the sequential service and resource feasibility constraints. See Ennis and
Keister (2010). The associated contract is sometimes called the ��rst-best contract�.
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In the next section, we introduce the notation and the setup. In Section 3,

we analyze the post-deposit game and characterize the parameters such that

the non-run equilibrium and the run equilibrium coexist in the post-deposit

game. In Section 4, we provide the global comparative statics for the optimal

contract. We focus on how di¤erent values of the parameter describing the

relative strength of the impulse demand lead to one of three cases: Depend-

ing on the parameters, the unconstrained e¢ cient allocation is (1) strongly

implementable, (2) weakly implementable, or (3) not implementable. We

describe the optimal contract for each of the three cases. In Appendix 1, we

provide the proofs of our results. In Appendix 2, we provide comparative

statics with respect to the other parameters.

2 The Environment

The notation and the setup of the model is the same as in PS. There are

two consumers and three periods: 0, 1 and 2. In period 0, each consumer

is endowed with y units of the consumption good.9 Let c1 and c2 denote

the withdrawals of the depositor in period 1 and 2 respectively. The im-

patient consumers derive utility only from period-1 consumption while the

patient consumers derive utility only from period-2 consumption. The pa-

tient consumers can store consumption goods costlessly across the two pe-

riods. The impatient and patient consumers, respectively, receive utilities

u(c1) and v(c1 + c2), where

u(x) = A
(x)1�a

1� a , where A > 0: (1)

v(x) =
(x)1�b

1� b (2)

A re�ects the strength of the �impulse demand�of impatient consumers. We

will discuss this parameter in detail in section 3. The parameters a and b;

both larger than 1, are the coe¢ cients of relative risk aversion of the impa-

tient and patient consumers respectively. Consumers are identical in period

9There are no endowments in periods 1 and 2.
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0. In period 1, each consumer becomes either impatient with probability p

or patient with probability 1� p. Types are uncorrelated and private infor-
mation. Since the number of consumers is �nite, the aggregate number of

patient depositors is stochastic. In period 1; each depositor also observes a

sunspot variable � distributed uniformly on [0; 1]: Besides the storage tech-

nology, there is another investment technology. Investing one unit of period

0 consumption yields R > 1 units if harvested in period 2 and yields 1 unit

if harvested in period 1.

The sequential service constraint is part of the physical environment.

A depositor visits the bank only when he makes a withdrawal. When a

depositor learns his type and makes his withdrawal decision, he does not

know his position in the bank queue. If more than one depositor chooses

to withdraw, a depositor�s position in the queue is random; positions in the

queue are equally probable.

3 Post-Deposit Game

In the post-deposit game, c 2 [0; 2y] completely de�nes the corresponding
allocation. From PS, we know that the pre-deposit game has a run equilib-

rium only if the post-deposit game has both a non-run equilibrium and a run

equilibrium.10 In other words, given an arbitrary feasible contract c 2 [0; 2y];
the pre-deposit game has a run equilibrium only if

[v(c) + v(2y � c)]=2 > v[(2y � c)R] (3)

and

pv[(2y � c)R] + (1� p)v(yR) � p[v(c) + v(2y � c)]=2 + (1� p)v(c): (4)

Inequality (3) tells us that a patient depositor strictly prefers early with-

drawal when he expects that the other depositor, if patient, will also choose

10Proposition 2 in PS.
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early withdrawal. Inequality (4), which is the ICC, tells us that a patient

depositor (weakly) prefers late withdrawal when he expects that the other

depositor, if patient, will also choose late withdrawal.11

Let cearly and cwait be the values of c such that inequalities (3) and (4) hold

as equalities. If cearly < cwait; these two values become thresholds which de-

termine a patient depositor�s withdrawal strategies in the post-deposit game:

cearly is the threshold of c beyond which a patient depositor chooses early

withdrawal if he expects that the other patient depositor will also choose

early withdrawal. cwait is the threshold of c below which a patient depositor

chooses late withdrawal if he expects that the other patient depositor will

also choose late withdrawal. Therefore, in the post-deposit game, we have

a unique non-run equilibrium for c 2 [0; cearly], two equilibria (one non-run
equilibrium and one run equilibrium) for c 2 (cearly; cwait], and a unique run
equilibrium for c 2 (cwait; 2y]: See Figure 1.

If cearly � cwait; we have a unique non-run equilibrium for c 2 [0; cwait] and
a unique run-equilibrium for c 2 (cearly; 2y]. For c 2 (cwait; cearly]; a patient
depositor chooses early (late) withdrawal if he expects that the other patient

depositor will choose late (early) withdrawal and, therefore, a unique partial-

bank-run equilibrium exists. Hence, if cearly � cwait, for any c 2 [0; 2y] the
equilibrium in the post-deposit game is unique. In the next section, we will

see that the optimal contract is straightforward if cearly � cwait and full bank
run cannot be tolerated by the optimal contract.

11As in other papers in the literature, we assume that a patient depositor chooses early
withdrawal if he strictly prefers the early withdrawal to the late withdrawal. And he
chooses late withdrawal if he weakly prefers to do so.

8



In most of the paper, we focus on the leading case cearly < cwait; which

requires the parameters b and R to satisfy the condition speci�ed in Lemma

1. The intuition of Lemma 1 is the following. From inequality (3), the patient

depositor�s comparison between the early and late withdrawals depends on:

(1) his attitude toward the risk of being the second in line when participating

in runs, and (2) the productivity of the investment technologyR:GivenR; the

more risk-averse the patient depositor, the less preferable is it for the patient

depositor to run on the bank. Given his attitude toward risk, the more

productive the investment, the less preferable is it for the patient depositor

to run on the bank. Since v(c) = (c1�b � 1)=(1 � b), a patient depositor�s
attitude toward risk is characterized by b: Hence the existence of c 2 [0; 2y]
satisfying inequality (3) restricts the parameters b and R.12 The same is true

for inequality (4).

Lemma 1 cearly < cwait if and only if

b < minf2; 1 + ln 2= lnRg (5)

Given R and b satisfying (5), we know that a run-equilibrium exists in the

pre-deposit game only if the optimal deposit contract belongs to (cearly; cwait].

In the next section, we will solve the optimal deposit contract corresponding

to each of the three leading cases.

Before we discuss the optimal contract, we give a numerical example in

which b and R satisfy condition (5).

Example 1 The parameters are

a = b = 1:01; p = 0:5; y = 3;R = 1:5:

These parameters will be �xed throughout the examples. We see that b and

R satisfy (5). Hence cearly must be strictly smaller than cwait: We have that

cearly = 4:155955 and cwait = 4:280878. Therefore, whenever a contract c

is larger than 4:155955 and smaller than or equal to 4:280878, both a run

equilibrium and a non-run equilibrium exist in the post-deposit game.
12y is not important since it only changes the scale of the economy.
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4 The Optimal Contract in the Pre-Deposit

Game

When b and R do not satisfy (5), we have cearly � cwait: We have seen that
for any c 2 [0; 2y] the equilibrium is unique in the post-deposit game. Hence

the optimal contract c� in the pre-deposit game is the c which maximizes the

depositor�s welfare at the unique post-deposit game equilibrium. Since the

equilibrium in the post-deposit game is unique, c� must be smaller than cearly

and a full bank run is not tolerated.

For the rest of the paper, we focus on the values of b and R such that

condition (5) is satis�ed. When b and R satisfy (5), for any c 2 (cearly; cwait]
we have multiple equilibria in the post-deposit game. We assume � as in

PS �that bank runs are sunspot-driven. Whether bank runs occur in the

pre-deposit game depends on whether the optimal contract belongs to the

set (cearly; cwait]. To characterize the optimal contract, we further assume

that a = b and divide the problem into three cases depending on bc, the
contract supporting the unconstrained e¢ cient allocation. These three cases

are: bc � cearly (Case 1), bc 2 (cearly; cwait] (Case 2), and bc > cwait (Case 3). We
next characterize the parameters for each case. To be more speci�c, when b

and R satisfy (5) and a = b, we show that each case corresponds to certain

range of the parameter A; the impulse multiplier in the impatient consumer�s

utility function.
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4.1 The Impulse Parameter A and the 3 Cases

The contract bc supports the unconstrained e¢ cient allocation, where bc is
de�ned by

bc = arg max
c2[0;2y]

cW (c);
where

cW (c) = p2[u(c)+u(2y�c)]+2p(1�p)[u(c)+v[(2y�c)R]]+2(1�p)2v(yR): (6)
cW (c) is the depositor�s expected utility if the types of the depositors are
observable ex post.13 Given the CRRA utility function and the assumption

that a = b; we have

bc = 2y

fp=(2� p) + 2(1� p)=[(2� p)ARb�1]g1=b + 1 : (7)

From (7), we know that bc is an increasing function of A. To re�ect this
property, we write bc as bc(A): When the �impulse demand� is stronger, the
unconstrained e¢ cient allocation allows larger �rst-period withdrawal. Also

from equation (7), we have

lim
A!0

bc(A) = 0
and

lim
A!1

bc(A) = 2y

[p=(2� p)]1=b + 1 :

From equations (14) and (15), we know neither cearly nor cwait depends on

A. This is intuitive: cearly and cwait are determined by the patient depositor�s

utility which is independent of A. Hence if A is su¢ ciently small, we must

have Case 1. Furthermore, if

2y

[p=(2� p)]1=b + 1 � c
early;

13cW (c) is also the depositor�s expected utility in the non-run equilibrium of the post-
deposit game.
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only Case 1 obtains.

If

cearly <
2y

[p=(2� p)]1=b + 1 � c
wait;

there is a unique level of A; denoted by A1; such that

bc(A1) = cearly: (8)

Hence if A � A1, we have Case 1. And if A > A1, we have Case 2. Case 3
does not exist.

If

cwait <
2y

[p=(2� p)]1=b + 1 ;

there exists a unique level of A; denoted by A2; such that

bc(A2) = cwait: (9)

We have all three cases now: if A � A1, we have Case 1; if A1 < A � A2, we
have Case 2; if A > A2, we have Case 3.14

Example 2 We have shown that cearly = 4:155955 and cwait = 4:280878.

Now we calculate the thresholds of A for each case. It is easy to check that

cwait < 2y
[p=(2�p)]1=b+1 for the speci�ed parameter values. Therefore, all three

cases exist: We have A1 = 6:217686 and A2 = 10:277988: Hence if A �
6:217686, we are in Case 1; If 6:217686 < A � 10:277988, we are in Case 2;
If A > 10:277988, we are in Case 3.

In Appendix 2, we discuss how other parameters, namely p;R and b;

a¤ect bc. Unlike A; these parameters also a¤ect the values of cearly and/or
cwait and bc is not monotonic in the parameters. The analysis is slightly more
complicated in these cases, but once the parameter values are given, we can

14It is easy to see that cearly does not depend on p and y < cearly < cwait < Ry.
lim
p!1

2y
[p=(2�p)]1=b+1 = y and lim

p!0

2y
[p=(2�p)]1=b+1 = 2y: Hence we know that for su¢ ciently

large p; 2y
[p=(2�p)]1=b+1 � c

early: If R < 2; cwait < 2y
[p=(2�p)]1=b+1 for su¢ ciently small p: For

intermediate values of p, we have cearly < 2y
[p=(2�p)]1=b+1 � c

wait:
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readily compute the values of bc; cearly and cwait to determine which case is
applicable.

4.2 The Optimal Contract

In this subsection, we focus on the parameter values of b and R satisfying

condition (5). To characterize the optimal contract, we further assume that

a = b: We will describe the optimal contract c� for the three cases speci�ed

above.

For an arbitrary contract c 2 [0; 2y]; we have one or two equilibria in

the post-deposit game depending on whether c belongs to (cearly; cwait] or

not. As equation (6) shows, the depositor�s expected utility in the non-run

equilibrium is cW (c). Let W run(c) denote the depositor�s expected utility in

the run equilibrium (if it exists). It is given by

W run(c) = p2[u(c) + u(2y � c)] + p(1� p)[u(c) + v(2y � c) + v(c) + u(2y � c)]
+(1� p)2[v(c) + v(2y � c)]: (10)

When c � cearly; only the non-run-equilibrium exists and the depositor�s

ex ante expected utility is simply cW (c): When cearly < c � cwait; both the

run-equilibrium and the non-run-equilibrium exist in the post-deposit game.

If the run is sunspot-driven and the run probability is s, the depositor�s ex-

ante expected utility is (1� s)cW (c) + sW run(c): When cwait < c � 2y; only
the run-equilibrium exists and therefore, no consumer would want to deposit

in this bank. Hence when we consider the optimal contract, [0; cwait] is the

relevant choice interval for c.

Let c�(s) denote the optimal contract which maximizes the depositor�s

ex-ante expected utility in the pre-deposit game given the run probability

s.15 We have

c�(s) = arg max
c2[0;cwait]

W (c; s);

15At c�(s;A), consumers must weakly prefer depositing to autarky. This is because the
deposit contract can always mimic the autarky allocation by setting c�(s;A) equal to y.
Hence the participation constraint is not an issue for c 2 [0; cwait]
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where

W (c; s) =

( cW (c) if c � cearly:
(1� s)cW (c) + sW run(c) if cearly < c � cwait:

(11)

Case 1 The unconstrained e¢ cient allocation is strongly implementable, i.e.,bc � cearly:
Since the unconstrained e¢ cient allocation is strongly implementable, it

is straightforward to see that the optimal contract for the pre-deposit game

supports the unconstrained e¢ cient allocation

c�(s) = bc
and that a bank run does not occur in equilibrium. Other contracts cannot be

optimal because they either deliver lower welfare in the non-run equilibrium

or, to make things worse, they may also support a run equilibrium.16 The

next is a numerical example for Case 1.

Example 3 In Example 2, we have seen that as long as A � A1 = 6:217686;
we have Case 1 for this economy. Let A be equal to 1: We have c�(s) = bc =
3:004012 for any s 2 [0; 1]: Since c�(s) < cwait = 4:280878; a bank run is not
an equilibrium.

As we have discussed in section 4.1, when A is larger than A2, we have

Case 2:

Case 2 The unconstrained e¢ cient allocation is weakly implementable, i.e.,
cearly < bc � cwait:
16Note that, as have been discussed in the beginning of Section 4, if cwait � cearly

bank runs are not equilibrium at the optimal contract in the pre-deposit game either.
The di¤erence is the following. If cwait � cearly, any implementable allocation is strongly
implementable. Hence, non-run equilibrium and run equilibrium cannot co-exist. But in
Case 1, non-run equilibrium and run equilibrium cannot co-exist for some contracts but
they are not optimal.
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The optimal contract to the pre-deposit game cannot be bc except for
the degenerate case when s = 0. This is because a run equilibrium exists

at bc. How much the optimal contract deviates from bc depends on s; which
changes the trade-o¤ between the expected utilities over the 2 post-deposit

game equilibria. We show in Proposition 1 how the optimal contract to the

pre-deposit game changes with the probability s.

Proposition 1 In Case 2, the optimal contract c�(s) satis�es: (1) If s is
larger than the threshold probability s0 (speci�ed in equation (21) in the

proof), the optimal contract is run-proof, c�(s) = cearly. (2) If s is smaller

than s0; the optimal contract c�(s) tolerates runs and it is a strictly decreasing

function of s: We have that c�(s) � bc (with equality if and only if s = 0).
From Proposition 1, we can see that, in Case 2, the contract support-

ing the unconstrained e¢ cient allocation also supports a run equilibrium in

the post-deposit game. Except for the degenerate case of the run probabil-

ity s being zero, that contract cannot be optimal since it delivers very low

welfare in the run equilibrium. The optimal contract should optimize the

ex-ante trade-o¤ between the depositors�welfares in the run and the non-run

equilibria. Intuitively: The trade-o¤ depends on the run probability s. For

positive s, a more conservative contract, still tolerating runs or eliminating

runs completely, is desirable. If s is larger than the threshold probability

s0, eliminating runs is less costly (in terms of ex ante welfare) than tolerat-

ing runs; hence the optimal contract is the best run-proof contract in which

the non-run equilibrium is implemented uniquely. On the other hand, if s

is smaller than s0, tolerating runs is less costly. Furthermore, c�(s) will be

strictly decreasing in s since, as s increases, the ex ante welfare leans more

towards the welfare in the run equilibrium. The sunspot equilibrium alloca-

tion in this case is not a mere randomization over the unconstrained e¢ cient

allocation and the corresponding run allocation.

Example 4 In Example 2, we have seen that as long as 6:217686 < A �
10:277988; we have Case 2 for this economy. Let A be equal to 8: We have

that s0 = 0:001382358. If s > s0; the optimal contract is run-proof and
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c�(s) = cearly = 4:155955: If s < s0; the optimal contract tolerates runs and

c�(s) is strictly decreasing in s and c�(0) = bc = 4:225479. If s = s0, both the
run-proof contract (cearly) and the run-tolerating contract (ec(s0)) are optimal.
Figure 3 plots c�(s) of this case.

As we have discussed in section 4.1, we shift from Case 2 to Case 3 for

even larger values of A:

Case 3 The unconstrained e¢ cient allocation is not implementable, i.e.,
cwait < bc:
In this case, the unconstrained e¢ cient allocation is not implementable

since bc cannot satisfy the ICC. Like Case 2, the optimal contract for the pre-
deposit game also involves the trade-o¤ between the two post-deposit game

equilibria, but the optimal contract also has to maintain the non-run equi-

librium (i.e., satisfy the ICC).17 This changes how c�(s) tolerates runs. To

provide su¢ cient incentives for the patient depositors to choose late with-

drawal, the ICC requires that c be not too large. Hence the binding ICC

forces c�(s) to be more conservative than it would be without the ICC. If the

ICC binds, then for small s when runs are still tolerated, c� is independent

of s.
17In Case 2, the ICC cannot bind. To see this, �rstly we know that a contract c which

is larger than the contract supporting the unconstrained e¢ cient allocation makes the
run equilibrium more devastating. Secondly, it does not improve welfare at the non-run
equilibrium. Hence to �nd the optimal contract, we need only to focus on contracts which
are more conservative than the contract supporting the unconstrained e¢ cient allocation.
So binding incentive compatibility cannot occur in Case 2.
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Proposition 2 In Case 3: (1) If s is larger than the threshold probability
s1 (speci�ed in equation (26) in the proof), we have c�(s) = cearly and the

optimal contract is run-proof. (2) If s is smaller than s1, the optimal contract

c�(s) tolerates runs and it is a weakly decreasing function of s: Furthermore,

we have c�(s) = cwait for at least part of the run tolerating range of s.

At least when s is su¢ ciently small, maintaining the non-run equilibrium

is dominant in the determination of the optimal contract. So for Case 3,

when s is su¢ ciently small, c�(s) does not change with s since the ICC does

not depend on s: The ICC may bind for just part of the run-tolerating range

of s (the �rst sub-case) or the whole run-tolerating range of s (the second

sub-case).18 When the ICC binds, the allocation supported by the optimal

contract is a randomization over the constrained e¢ cient allocation19 and

the corresponding run allocation. The unconstrained e¢ cient allocation is

never supported by c�(s) since it is not implementable.

We next provide two examples of the optimal contract for Case 3, which

correspond to the two sub-cases.

Example 5 In Example 2, we have seen that as long as A > 10:277988,

we have Case 3. Let A be equal to 10:4: We have that s2 = 0:001719643

and s4 = 0:004520095: Since s4 > s2; we are in the �rst sub-case. We

have that s3 = 0:004524181: Hence when s < s2 = 0:001719643; the optimal

contract tolerates runs and the ICC binds: c�(s) = cwait = 4:280878: When

s2 � s < s3 = 0:004524181; the optimal contract tolerates runs and the ICC
does not bind. Hence c�(s) = c(s) and it is strictly decreasing in s: When

s = s3, both the run-proof contract cearly and the run-tolerating contract

(c(s3)) are optimal. When s3 < s; the optimal contract is run-proof and

c�(s) = cearly = 4:155955:

18The PS example �ts in the second sub-case.
19Ennis and Keister (2010) de�ne the constrained e¢ cient allocation as �a (contingent)

consumption allocation to maximize the ex ante expected utility of agents subject to
incentive compatibility, sequential service, and resource feasibility constraints�. We use
the same de�nition.
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Example 6 Let A be equal to 11: We have s2 = 0:009591026 and s4 =

0:005281242: Since s4 � s2; we are in the second sub-case. Hence when

s < s4; the optimal contract tolerates runs and the ICC binds. c�(s) = cwait =

4:280878;When s > s4; the optimal contract is run-proof and c�(s) = cearly =

4:155955; When s = s4; both the run-proof contract (cearly) and the run-

tolerating contract (cwait) are optimal.

We plot c� versus s and A in Figure 6. If A � A1 = 6:217686; we are in
Case 1 and the optimal contract doesn�t tolerate runs and it is equal to bc the
value of which depends on A. If 6:217686 < A � 10:277988, we are in Case
2 and the optimal contract is strictly decreasing in s until it levels o¤ at the

best run-proof contract cearly = 4:155955. If 10:277988 < A, we are in Case

3 and the ICC binds when s is small. The ICC may bind either in part of

the run-tolerating range of s (the �rst sub-case) or the whole run-tolerating

range of s (the second sub-case).
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In Figure 7, we plot the welfare loss (measured in percentage of endowment)

from being restricted to using for small s the contract supporting the con-

strained e¢ cient allocation and for large s to the best run-proof contract,

instead of using c�(s): In our calculations, we assume the bank is able to

choose the jump probability freely. If the jump probability is forced to be

the same as in c�(s), the welfare loss would typically be greater than that

shown in Figure 7. Since c�(s) equals the best run-proof contract for large

s; there is no welfare loss for large s. If we are in Case 1, the welfare loss is

0 since c�(s) is the same as the contract supporting the constrained e¢ cient

allocation. If we are in Case 2, the welfare loss is positive whenever runs are

tolerated by c�(s) and the loss is larger as the run probability increases. This

is because c�(s) is di¤erent from the contract supporting the constrained ef-

�cient allocation (except when s = 0) and, as s increases, c�(s) is smaller

but the contract supporting the constrained e¢ cient allocation (for �xed A)

doesn�t change. If we are in Case 3, the welfare loss is 0 for small s for

which ICC binds, which makes c�(s) the same as the contract supporting the

constrained e¢ cient allocation.
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5 Summary

PS show that bank runs (driven by sunspots) can be equilibria in the pre-

deposit game of the corresponding DD-type post-deposit banking model. The

optimal contract to the pre-deposit game in the PS example is a step-function

of the run-probability: the optimal contract tolerating runs does not change

with the run-probability until the probability reaches the threshold at which

the optimal contract switches to the best run-proof contract.

In this paper, the general form of the optimal contract to the pre-deposit

game is analyzed for di¤erent parameters. We �rst characterize the parame-

ters such that multiple equilibria, non-run and run, coexist in the post-deposit

game. When multiple equilibria coexist, the unconstrained e¢ cient alloca-

tion falls into one of the three cases: (1) it is strongly implementable, (2) it

is weakly implementable, or (3) it is not implementable. We characterize the

parameters for each case. Bank runs matter in the last two cases. In both of

these cases, the optimal contract switches to being run-proof when the run

probability is su¢ ciently large. When runs are tolerated, whether the opti-

mal contract should be more conservative for a larger run probability di¤ers

in the two cases: In Case 2, the ICC doesn�t bind since the unconstrained

e¢ cient allocation is (weakly) implementable. As a result of balancing the

trade-o¤ between the run equilibrium and non-run equilibrium in the post-

deposit game, the optimal contract adjusts continuously and becomes more
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conservative as the run probability increases. However, in Case 3, the ICC

binds for small run-probabilities, which forces the contract to be more con-

servative than it would have been without the constraint. Hence, for Case 3,

the optimal contract does not change with s until the ICC no longer binds.

The implication of identifying the cases of the optimal contract is that

how bank runs are tolerated can be complicated. As the economy�s level

of fragility or pessimism (indicated by the probability s) changes, how the

banking contract and bank regulation should respond is di¤erent for di¤erent

cases.

Our paper makes a contribution to the wider literature on sunspot equi-

librium. This is yet another example in which not all sunspot equilibria are

mere randomizations over certainty equilibria. See Shell (2008).

6 Appendix 1

6.1 Proof of Lemma 1

Proof. Inequality (3) holds if and only if

�(c1�b)=2 + (2y � c)1�b(R1�b � 1=2)
(b� 1) > 0:

For c 2 [0; 2y] to satisfy the above inequality, we must have (R1�b�1=2) > 0,
which can be re-written as

b < 1 + ln 2= lnR: (12)

When b and R satisfy condition (12), inequality (3) is equivalent to

c 2 (cearly; 2y]; (13)

where

cearly = 2y=[(2=Rb�1 � 1)1=(b�1) + 1]: (14)
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That is, cearly is de�ned to be the level of c beyond which a patient depositor

chooses early withdrawal if he expects that the other patient depositor will

also choose early withdrawal. The superscript �early�stands for the patient

depositor�s expectation that the other patient depositor will choose early

withdrawal. Hence the set of c satisfying condition (3) is non-empty if and

only if b and R satisfy inequality (12).

Now, we move to inequality (4). The di¤erence between the left-hand

side and the right hand side of inequality (4) is a continuous function of c.

When inequality (12) holds, the di¤erence is decreasing in c. It changes from

+1 when c = 0 to �1 when c = 2y. Hence there is a unique level of c 2
(0; 2y), such that (4) holds with equality. Denote that level of c by cwait:

That is, cwait is de�ned by

pv[(2y�cwait)R]+(1�p)v(yR) = p[v(cwait)+v(2y�cwait)]=2+(1�p)v(cwait):
(15)

Thus cwait is the level of c below which a patient depositor chooses late with-

drawal if he expects that the other patient depositor will also choose late

withdrawal. The superscript �wait�stands for the patient depositor�s expec-

tation that the other patient depositor will wait and choose late withdrawal.

So when b and R satisfy condition (12), inequality (4) is equivalent to

c 2 [0; cwait]: (16)

For c to satisfy both condition (3) and condition (4), we also need

cwait > cearly: (17)

To get the condition on b and R for inequality (17) to hold, we merely need

to replace c in inequality (4) by cearly and require that inequality (4) holds.

This results in
2=R

(2=Rb�1 � 1)1=(b�1) + 1 < 1: (18)

When b and R satisfy condition (12), (2=Rb�1 � 1)1=(b�1) is decreasing in b:
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Hence inequality (18) is equivalent to

b < 2 (19)

Therefore, given inequality (12), the set of c satisfying condition (4) is non-

empty if and only if b is smaller than 2. To summarize, the set of c satisfying

both condition (3) and (4) is non-empty if and only if b and R satisfy both

inequality (12) and inequality (19), which results in condition (5).

6.2 Proof of Proposition 1

Proof. Since cW (c) > W run(c); W (c; s) is not continuous at cearly if s > 0.

We study the two regions [0; cearly] and (cearly; cwait] separately, and compare

the maximum values of W (c; s) in these two regions.

For c 2 [0; cearly], W (c; s) is strictly increasing in c since cearly < bc: Hence
the maximum value of W (c; s) over [0; cearly] is achieved at cearly: Therefore

the best run-proof contract is c = cearly.

For c 2 (cearly; cwait], the maximum value ofW (c; s)may not be achievable
because (cearly; cwait] is not closed. To �x this problem, we de�ne a functionfW (c; s) on [cearly; cwait] by

fW (c; s) = (1� s)cW (c) + sW run(c):

When c 2 (cearly; cwait]; fW (c; s) = W (c; s). When c = cearly; fW (c; s) <
W (c; s): Let ec(s) be de�ned by

ec(s) = arg max
c2[cearly ;cwait]

fW (c; s):
We have ec(s) = maxf 2y


1=b + 1
; cearlyg; (20)

where


 =
s(1� p)(pA+ 1� p 2

Ra�1 ) + (p
2A+ (1� p)p 2

Ra�1 )

s(1� p)(1� pA) + p(2� p)A :

It can be shown that ec(s) is continuous in s. Furthermore, ec(s) is strictly
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decreasing in s when s is small such that ec(s) > cearly:20 We also have cearly =ec(1) < ec(0) = bc: fW (ec(s); s) is continuous in s and it is also strictly decreasing
in s since cW (c) > W run(c): Furthermore, we have

fW (ec(0); 0) = cW (bc) > cW (cearly)
and fW (ec(1); 1) = W run(cearly) < cW (cearly):
Hence there is a unique s0 2 (0; 1) such that

fW (ec(s0); s0) = cW (cearly): (21)

Obviously, ec(s0) > cearly.
Hence if s < s0, we have c�(s) = ec(s): The optimal contract c�(s) tolerates

runs and it is a strictly decreasing function of s: We have cearly < c�(s) � bc
(with equality if and only if s = 0).

If s > s0, c�(s) = cearly: The optimal contract is run-proof.

If s = s0, fW (ec(s); s) = cW (cearly): So both the run-proof contract (cearly)
and the run-tolerating contract (ec(s0)) are optimal.
6.3 Proof of Proposition 2

Proof. The proof is similar to that for Proposition 1. The only di¤erence
is that the ICC may bind. We still study the two regions [0; cearly] and

(cearly; cwait] separately, and compare the maximum values ofW (c; s) in these

two regions.

For c 2 [0; cearly], it is easy to see that W (c; s) is strictly increasing.

Hence, as in Case 2, the best run-proof contract is still c = cearly.

For c 2 (cearly; cwait], the maximum value ofW (c; s)may not be achievable
because (cearly; cwait] is not closed. To �x that problem and characterize the

20It is easy to check that if ec(s;A) > cearly. ec(s;A) is strictly decreasing in s because
ARa�1 > 1: ARa�1 > 1 must hold in Case 2. To see why, it is trivial to establish that
cearly must be larger than y: Hence in Case 2, we have bc(A) > y; which leads to ARa�1 > 1:
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possibly binding ICC, we de�ne a function W (c; s) on [cearly; 2y] :

W (c; s) = (1� s)cW (c) + sW run(c):

When c 2 (cearly; cwait]; W (c; s) = W (c; s). When c = cearly; W (c; s) <

W (c; s): Let c(s) be de�ned by

c(s) = arg max
c2[cearly ;2y]

W (c; s):

We have that

c(s) =
2y

�1=b + 1
; (22)

where

� =
s(1� p)(pA+ 1� p 2

Ra�1 ) + (p
2A+ (1� p)p 2

Ra�1 )

s(1� p)(1� pA) + p(2� p)A :

By using the same argument as that in Proposition 2, we can show that

c(s) is continuous in s. Furthermore, c(s) is strictly decreasing in s when s

is small such that c(s) > cearly: We also have that cearly = c(1) < c(0) = bc:
Note that in Case 3, cwait < bc: Hence there is a unique level of s 2 (0; 1);
denoted by s2; such that

c(s2) = c
wait: (23)

That is, s2 is the threshold run probability below which the ICC binds. Next,

we need to check, when s = s2, whether the optimal contract still tolerates

runs. To do that, we de�ne s4 by

s4 =
cW (cwait)�cW (cearly)cW (cwait)�W run(cearly)

: (24)

Obviously, s4 2 (0; 1). There will be two sub-cases depending on whether
the optimal contract still tolerates runs when when s = s2.

In the �rst sub-case of Case 3, s4 > s2; that is, at the threshold run prob-

ability which makes the ICC just become non-binding, the optimal contract

still tolerates runs. Now we need to determine the threshold run probabil-

ity beyond which the optimal contract switches to being run-proof. That
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threshold level is s3 which is de�ned by

W (c(s3); s3) = cW (cearly): (25)

By using the same argument as that in Proposition 2, we know thatW (c(s); s)

is continuous and strictly decreasing in s: Therefore, s3 is unique and it is

well de�ned. Since s4 > s2, we know that s3 > s2. c�(s) satis�es the following

property: When s < s2; the ICC binds and c�(s) = cwait since

W (cwait; s) =W (cwait; s) > cW (cearly):
When s2 � s < s3; the ICC no longer binds and c�(s) = c(s) since

W (c(s); s) =W (c(s); s) > cW (cearly):
When s = s3, both c(s) and cearly are optimal since

W (c(s); s) =W (c(s); s) = cW (cearly):
When s > s3, c�(s) = cearly since

W (c(s); s) =W (c(s); s) < cW (cearly):
To summarize, if s4 > s2 we have

c�(s) =

8><>:
cwait if s < s2
c(s) if s2 � s � s3
cearly if s3 � s.

In the second sub-case of Case 3, s4 � s2; that is, at the run probability
which makes the ICC just become non-binding, the optimal contract does

not tolerate runs. Hence the optimal contract will switch to the best run-

proof contract (cearly) when the ICC still binds. c�(s) satis�es the following
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property: When s < s4; the ICC binds and c�(s) = cwait since

W (cwait; s) =W (cwait; s) > cW (cearly):
When s = s4; both cwait or cearly are optimal since

W (cwait; s) =W (cwait; s4) = cW (cearly):
When s4 < s < s2; c�(s) = cearly. This is because the ICC binds and

W (cwait; s) =W (cwait; s) < cW (cearly):
When s2 � s, c�(s;A) is still equal to cearly. This is because the ICC no

longer binds and

W (c(s); s) =W (c(s); s) < W (c(s2); s2) =W (c
wait; s2) < cW (cearly):

To summarize, if s4 � s2; we have

c�(s) =

(
cwait if s � s4
cearly if s � s4.

We can see, in both of the two sub-cases, c�(s) switches to run-proof if the

run probability is larger than the threshold. Let s1 denote that threshold

run probability and we can have

s1 =

(
s3 if s4 > s2
s4 if s4 � s2.

(26)

7 Appendix 2

In section 4.1, we have shown how di¤erent values of A correspond to the

three cases of bc, which determines how the optimal contract tolerates runs.
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In this section, we will discuss how other parameters, namely p;R and b;

a¤ect bc. We limit our discussion to the set of parameters permiting strategic
complementarity, i.e., b and R satisfying inequality (5).

7.1 Probability of impatience p

From equation (7), it is easy to show that bc is increasing in p if ARb�1 < 1:bc is equal to y if ARb�1 = 1: And bc is decreasing in p if ARb�1 > 1: Hence
how p a¤ects bc depends on the values of A and R: The intuition is the

following. Because there is aggregate uncertainty, the economy may have

2 impatient consumers, 1 impatient consumer and 1 patient consumer, or

2 patient consumers. p changes the likelihood ratio between the �rst and

the second scenarios.21 The �rst scenario requires no cross-subsidy between

the consumers. The second scenario requires cross-subsidy, but how it is

conducted depends on A and R. If ARb�1 < 1; the subsidy is from the

impatient to the patient (i.e., bc < y). While if ARb�1 > 1; the subsidy is

from the patient to the impatient (i.e., bc > y). When p increases, the second
scenario becomes less likely compared to the �rst one and less subsidy needs

to be undertaken (i.e., bc should be closer to y). Hence if ARb�1 < 1; bc
increases as p increases. And if ARb�1 > 1; the opposite is true.

To see how di¤erent values of p correspond to the three cases of the

optimal contract, note that cearly doesn�t depend on p and

lim
p!1
bc = y < cearly:

Hence we are in Case 1 whenever p is su¢ ciently large. Furthermore,

lim
p!0
bc = 2y

(1=ARb�1)1=b + 1

Hence if 2y
(1=ARb�1)1=b+1

� cearly; only Case 1 obtains.
If

2y

(1=ARb�1)1=b + 1
> cearly;

21The last scenario doesn�t matter since the welfare there won�t be a¤ected by c:

28



which implies ARb�1 > 1; there is a unique level of p; denoted by p1; such

that bc(p1) = cearly:
If p � p1; we are in Case 1. If p < p1; we are in Case 2 or Case 3 depending
on whether bc(p) is smaller than than cwait or not. Note that cwait changes
with p:22

Example 7 Let

a = b = 1:01;A = 10; y = 3;R = 1:5:

We have that cearly = 4:155955: It is easy to check that if p � 0:548823, we are
in Case 1. If 0:497423 � p < 0:548823, we are in Case 2. If p < 0:497423,
we are in Case 3.

22In fact, cwait is decreasing in p. This is quite intuitive. When a patient depositor
makes his withdrawal decision, larger p implies that he expects that it is more likely that
the other depositor is impatient and, therefore, withdraws early. Hence it is harder to
make the patient depositor withdraw late.
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We plot c� versus s and p in Figure 8. If p � 0:548823; we are in Case 1
and the optimal contract doesn�t tolerate runs and it is equal to bc the value
of which depends on p. If 0:497423 � p < 0:548823, we are in Case 2 and

the optimal contract is strictly decreasing in s until it levels o¤ at the best

run-proof contract cearly = 4:155955. If p < 0:497423, we are in Case 3 and

the ICC binds when s is small.

7.2 Return on bank investment R

From equation (7), it is easy to show that bc is increasing in R: R a¤ectsbc by changing the optimal allocation when the economy has one impatient
depositor and one patient depositor. For larger R; on the one hand, the

marginal rate of transformation between the �rst period consumption and

the second period consumption is higher. On the other hand, the marginal

rate of substitution between the �rst period consumption by the impatient

depositor for the second period consumption by the patient depositor is also

higher. Since b > 1, the second e¤ect is stronger and, therefore, the optimal

allocation allows more �rst-period withdrawal, i.e., bc increases as R increases.
It is easy to see that both cearly and cwait increase in R: If bc � cearly, we are
in Case 1. If cearly < bc � cwait, we are in Case 2. If bc > cwait, we are in Case
3.

Example 8 Let

a = b = 1:01;A = 10; y = 3; p = 0:5:

It is easy to check that if R � 1:572948, we are in Case 1. If 1:497374 �
R < 1:572948, we are in Case 2. If R < 1:497374, we are in Case 3.
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We plot c� versus s and R in Figure 9. If R � 1:572948; we are in Case 1
and the optimal contract doesn�t tolerate runs and it is equal to bc the value
of which depends on R. If 1:497374 � R < 1:572948, we are in Case 2 and
the optimal contract is strictly decreasing in s until it levels o¤ at the best

run-proof contract cearly. Note that cearly increases in R: If R < 1:497374,

we are in Case 3 and the ICC binds when s is small.

7.3 Risk aversion parameter b

To make the analysis consistent with other comparative statics, let a = b:

The sign of @bc
@b
is the same as the sign of

ln(
p

2� p +
2(1� p)

(2� p)ARb�1 ) +
2(1� p)b ln(R)

2(1� p) + pARb�1 :

Hence if A is smaller than a threshold level, @bc
@b
> 0: Otherwise, we have

@bc
@b
< 0: The intuition is the following. As b increases, consumption smoothing

across the two depositors is more desirable. When A is small, bc is small and
more consumption smoothing requires larger bc: When A is large, bc is large
and more consumption smoothing requires smaller bc:
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Example 9 Let
A = 10; y = 3; p = 0:5;R = 1:5:

It is easy to check that if b � 1:112528, we are in Case 1. If 1:00524 � b <
1:112528, we are in Case 2. If b < 1:00524, we are in Case 3.

We plot c� versus s and b in Figure 10. If b � 1:112528; we are in Case 1
and the optimal contract doesn�t tolerate runs and it is equal to bc the value
of which depends on b. If 1:00524 � b < 1:112528, we are in Case 2 and

the optimal contract is strictly decreasing in s until it levels o¤ at the best

run-proof contract cearly. If b < 1:00524, we are in Case 3 and the ICC binds

when s is small.
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