Economics 4905 Financial Fragility & the Macroeconomy Fall 2015 Solutions to Problem Set #2 Due Monday, October 6, 2015 Revised October 25, 2015

<u>Connections between Futures Market Economy and</u> <u>Money Market Economy</u>

One good per period, $\ell = 1$, two periods, t = 1, 2.

Futures Market:

$$\max \mathbf{u}_h \left(x_h^1, x_h^2 \right)$$
$$st. p^1 x_h^1 + p^2 x_h^2 = p^1 \boldsymbol{\omega}_h^1 + p^2 \boldsymbol{\omega}_h^2$$

Equilibrium is a price vector (p^1, p^2) such that

$$\sum_{h} x_{h}^{t} = \sum_{h} \omega_{h}^{t} \text{ for } t = 1, 2.$$

Define the interest factor R and the interest rate r in terms of the equilibrium commodity prices (p^1, p^2) .

Money Market:

$$\max \mathbf{u}_h \left(x_h^1, x_h^2 \right)$$

$$st. \qquad p^1 x_h^1 + p^{m^1} m_h^1 = p^1 \omega_h^1$$

$$p^2 x_h^2 + p^{m^2} m_h^2 = p^2 \omega_h^2$$

Equilibrium $\left(p^{1}, p^{2}, p^{m^{1}}, p^{m^{2}}\right)$ such that

$$\sum_{h} x_{h}^{t} = \sum_{h} \omega_{h}^{t} \text{ and } \sum_{h} m_{h}^{t} = 0 \text{ for } t = 1, 2.$$

0.

From the definitions of present prices, the interest factor and the interest rate, we have:

$$p^{1} = 1, (p^{1}, p^{2}) = (1, p^{2}).$$

 $p_{2} = \frac{1}{R} = \frac{1}{1+r}.$

Prove that in equilibrium $p^{m^1} = p^{m^2} = p^m \ge 0$. This is a no-arbitrage-property result.

Answer:

Consumer h maximizes his financial wealth through arbitrage:

$$\max W_{h} = p^{m^{1}}m_{h}^{1} + p^{m^{2}}m_{h}^{2}$$

$$m_{h}^{1} + m_{h}^{2} = 0$$

$$m_{h}^{2} = -m_{h}^{1}.$$

$$W_{h} = \left(p^{m^{1}} - p^{m^{2}}\right)m_{h}^{1}.$$

If $p^{m^1} > p^{m^2}$, $m_h^1 > 0$. Borrow (high) in period 1 and re-pay (low) in period 2.

If
$$p^{m^2} > p^{m^1}$$
, $m_h^1 > 0$.

If $p^{m^2} \neq p^{m^1}$, W_h can be arbitrarily large by choosing $|m_h^1|$ arbitrarily large. This allows x_h^1 and x_h^2 to be arbitrarily large.

So,

$$\sum_{h} x_{h}^{t} > \sum_{h} \omega_{h}^{t} \text{ for } t = 1, 2.$$

Hence, $p^{m^2} = p^{m^1}$ is required for competitive equilibrium. Let

$$p^m = p^{m^2} = p^{m^2} \ge 0.$$

2.

Show that if, (x_h^1, x_h^2) , h = 1, ..., n solves the futures market problem, it also solves the money market problem.

Proof:

Excess demand is $z_h^t = x_h^t - \omega_h^t$. $p^1 = 1$.

$$z_{h}^{1} + p^{2} z_{h}^{2} = 0$$
$$z_{h}^{1} = -p^{2} z_{h}^{2}$$

Define the scalar k by:

$$k=z_h^1-p^2z_h^2.$$

 Set

$$k = p^{m^1} m_h^1 = -p^m m_h^2 \,.$$

Hence,

$$z_{h}^{1} + p^{m}m_{h}^{2} = 0$$
$$p^{2}z_{h}^{2} + p^{m}m_{h}^{2} = 0$$
$$m_{h}^{1} + m_{h}^{2} = 0.$$

Hence if (x_h^1, x_h^2) is an equilibrium allocation in the futures market, is is also an equilibrium in the money market.

Show that if, (x_h^1, x_h^2) , h = 1, ..., n solves the money market problem with $p^m > 0$, then it also solves the futures market problem.

$$m_{h}^{1} + m_{h}^{2} = 0, \ m_{h}^{2} = -m_{h}^{1}.$$

$$p^{m} > 0.$$

$$z_{h}^{1} = -p^{m}m_{h}^{1}, \ p^{2}z_{h}^{2} = p^{m}m_{h}^{1}.$$

$$\frac{z_{h}^{1}}{p^{m}} = -m_{h}^{1}, \ \frac{p^{2}z_{h}^{2}}{p^{m}} = m_{h}^{1}.$$

 m_h^1 is a slack variable.

Hence, we have

$$z_h^1 + p^2 z_h^2 = 0.$$

Hence, if (x_h^1, x_h^2) is an equilibrium allocation in the money market economy with , then (x_h^1, x_h^2) is also an equilibrium allocation in the corresponding futures market economy.

3.