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Topic Overview

= Economic Role of Banks: transform illiquid assets into liquid liabilities

= Bank Run: depositors expect that the bank will fail - everyone wants to
withdraw deposits, even those who would normally prefer to wait

— The bank must liquidate assets at a loss, and is at risk of failure

— In a widespread panic (where many banks fail), the monetary system is
negatively impacted

= Model demonstrates:

1. Banks issuing demand deposits can improve a competitive market by
providing risk sharing among people who need to consume at different
times

2. Undesirable equilibrium potential — bank run

3. Bank runs cause issues through recall of loans and termination of
investment
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Initial AssumPtions

1. There exist three periods
— T=0,1,2;T=0represents the current state

2. There is a single good
3. There exist a continuum of agents with measure 1

4. Each agent is endowed with 1 unit of the good in their initial period (T= 0)

5. Agents can store their goods at zero cost



The Model: Asset Return

With an initial endowment of 1 unit, each agent can either opt to exercise the good in
period 1 or period 2
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The Model: Asset Return

With an initial endowment of 1 unit, each agent can either opt to exercise the good in
period 1 or period 2

e e e o ————

The amount the consumer gets in period two, denoted by the return “R”

or ‘0”7, is determined by the agent’s behavior in period 1




The Model: Preferences

Our model will take on the assumption that people have different behaviors

= In period 0, all agents are identical, and do not know if they are patient /
impatient

— T=0,1,2;T=0represents the current state

= In period 1, some agents become “patient” and others “impatient”
— This will affect their decision making

u(c;)  Function if the agent is impatient

u(c,)  Function if the agent is patient

= The probability of being impatient is A for each agent in period 0



Autark_y

= Utility of the impatient person in period 1: u(1)
= Utility of the patient person in period 2: u(R)
= Expected utility in period 0: Au(1) + (1-A)u(R)

= 1<R

— “Insurance” against the liquidity shock is desirable
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Banking Econom_y

= Bank offers demand deposit contract d,,d,)
= Agents

— Make deposits in period 0

— Either:

« Withdraw in period 1 (d,)
« Withdraw in period 2 (d,)

= Free-entry banking sector: (d,,d,) maximizes the depositor’s expected utility
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Deﬁning Variables / Parameters

T = Time period

d,= Demand for deposits in T =1

A = Probability of impatient

1 - A = Probability of patient

R = Returns from the second Period

y = Constant relative risk aversion

7= Tax to fund deposit insurance

V.= Payoffs in T=1

c¢,= consuption in T=i1, equivalent to d,

w, = fraction of withdrawals demanded in T =1

f,;= fraction of population that withdraws before agent |

o= ratio of withdrawals in T=1 and T=2
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OPtimal DePosit Contract

max :Au(d,)+ (1-A)u(d,)

s.t. (1-A)d , < (1-Ad )R
withdrawals in period2 TEOWCES in period 2

d=d, (IC)

(RC)

12



OPtimal DePosit Contract

Solving for eg d, and d,
Method 1: MRS = MRT
MU, _P
MU, P,
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OPtimal DePosit Contract

Solving for eg d, and d,
Method 1: MRS = MRT
MU, _P
MU, P,
Ud,,d,)=Au(d,)+d-A)u(d,)
MU, = v = Au'(d))
ad,
_aU

M —={1-A)U(d
U, o, (1-M)U(d,)
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OPtimal DePosit Contract

Solving for eg d, and d,
Method 1: MRS = MRT
MU, _P
MU, P,
ud,,d,)=Au(d)+1-A)u(d,)
MU, = v _ Au'(d,)

ad,

oU
MU2 = g=(1—A)U(d2)

2
P A, A
P, Ad, 1-4

R
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OPtimal DePosit Contract

Solving foregd, and d,
Method1: MRS = MRT
Udd,,d,) =Au(d,) +(1-A)u(d,)

U
MUl =£ =/1u (dl)

1

U

MU, =—=(1-2)U(d

= o, (1-A)U(d,)
B _AMd, _ 4

P, Ad, 1-2

A

w(@d)\1-2) \1-24
u'(d,)

T w(d,)

= R — Optimal Contract

16



Optimal Deposit Contract

~Ad)R

=
1

(1-2)d,
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OPtimal DePosit Contract

d,

d*,

Au(d,)+ (1= A)u(d,)

(1-A)d, =(1- Ad,))R

A
slope= -| —— |R
P (l—x)

u'(dy)\1-2 1-A
MRS - MRT 18
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Bank Runs

1-
CV

1-y

Let u(c) =

O<y<l
y =0 = No risk aversion

y >1= More risk aversion
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Bank Runs

1-
CV

L=y
y is a parameter € [0,1) U (1,)

Let u(c)=

y =0 = No risk aversion

y >1= More risk aversion

u'(c)=c"’
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Bank Runs

1-
CV

1-y
y is a parameter € [0,1) U (1,oo)

Let u(c)=

y =0 = No risk aversion

y > 1= More risk aversion

u'(c)y=c™’

{44
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Bank Runs

Solving : (1= A)d,R" =(1-Ad )R
1

d, = 1
A+l -A)R(fl)
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Deﬁning Variables / Parameters

T = Time period

d,= Demand for deposits in T =1

A = Probability of impatient

1 - A = Probability of patient

R = Returns from the second Period

y = Constant relative risk aversion

7= Tax to fund deposit insurance

V.= Payoffs in T=1

c¢,= consuption in T=i1, equivalent to d,

w, = fraction of withdrawals demanded in T =1

f,;= fraction of population that withdraws before agent |

o= ratio of withdrawals in T=1 and T=2
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Bank Runs

No run scenario
ro=1

V(D < (f.DV0= 7
The bank would always have sufficient funds to pay agentsr=1in T =1

Not an optimal contract because it does not provide the impatient with insurance
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Bank Runs

1 2%
l<e¢ <c, <R

OR > 1
l<c ,R>c; ,c <ci
-1
CRRA:U(c) = 1 ;7 >1
e

1
¢; =(pR) ¢}

; R
C1 =

(1= 2)(PR) + AR

1

y
= R(IOR)I

(1= A)(oR)” + AR
y>LoR>1cl >l
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Bank Runs

Proof:

1

Since : R>1=>R2R;

! 1
p<l=1>p ,R>(pR)’

1
(1-A)R>(1-A)pR)

1

R>(1-A)pR) + AR
= >1
Substitute : ¢, >1 into RC
(1-A)c. =R(1+Ac; )< R(1-4)

2%
¢, <R

1* 2%
.'.1<c1 <c, <R
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OPtimal DePosit Contract

d,

d*,

Au(d,)+ (1= A)u(d,)

(1-A)d, =(1- Ad,))R

A
slope= -| —— |R
P (l—x)

u'(dy)\1-2 1-A
MRS - MRT 28




Bank Runs

The less-than-optimal equilibrium where all agents become impatient

Depositat T=0,c, =c; =c, =0

Payoutin T = lisr, if the fraction of the withdrawals
before the Agent J, (f,)in T =1

Vilf;1) =1

f = deposit withdrawals

rf < l V, = period 1 payoff per unit at T=1
> 7 f; = # of withdrawer's deposits serviced
1 before agent's as a fraction of demand deposits
0;f >—
J
h

V,(fr) = max{R(L-r.f /1~ /),0}
Iff> ! the bank fails because they can't afford to pay people

h

who withdraw in T =2

* Everyone receives risky return with mean of 1

* All production interupted at T =1 = inefficient
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Bank Runs

= A bank run has all agents withdraw their depositsat T =1
— If this is anticipated, all agents will prefer to withdraw at T =1

— The face value of deposits are larger than the liquidation value of the bank's
assets

= The bank run equilibrium provides allocations that are worse for all agents
than they would have obtained without the bank

= The "transformation” of illiquid assets into liquid assets is responsible
— For the liquidity service provided by banks
— For their susceptibility to runs
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Bank Runs

= Agents deposit some of their wealth even if they anticipate a positive
probability of a run

— Provided that the probability is small enough
— The good equilibrium dominates holding assets directly
= Runs happen if the selection between the bank run equilibrium and the good

equilibrium depended on some commonly observed random variable in the
economy

— This could be a bad earnings report, a commonly observed run at some other
bank, a negative government forecast, or even sunspots
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Bank Runs

An optimal equilibrium for all agents

Only impatient people withdraw at T=1

Patient people withdraw at T=2

1, = payment in T=1

Set r, = ¢, = optimal consumption of Type 1 agent
Vi(fnd)=cf

V,(f.d)=c;

c; >¢ , pR>1

=V, (f.n) = Vi(f,,r) — Satisties self selection constraint
Consumption of type 1 agent=w V|(f,,d,)

Consumption of type 2 agent=w V|(f,,d))+(l-w,)r,(f,d))
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Relative Risk Aversion

RRA =-C= (C); U"(C)<1—RRA

I-y

CRRA Utility Function: , ¥ is a parameter € [O,l) U (1,00)

I-y
If two individuals have different CRRA utility functions, the one with

higher value of y 1s considered to be more risk averse.

33



Relative Risk Aversion

Uu(c)
RRA=-C ;U"(C)<1—RRA

I-y

CRRA Utility Function: . v is a parameter € [0,1)

I-y
If two individuals have different CRRA utility functions, the one with

higher value of y 1s considered to be more risk averse.
U'(C)=C"
U"(C)=-yc™"
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Relative Risk Aversion

Uu(c)
RRA=-C ; U"(C)<1—RRA
v'(c)
-y

CRRA Utility Function: , ¥ 1S a parameter € [0,1)

1=y
If two individuals have different CRRA utility functions, the one with

higher value of y 1s considered to be more risk averse.
U'(C)=C"
U"(C)=-yC™"
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Relative Risk Aversion

u© |

A

/

CRRA

Linear

Premium for Insurance
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Tax on Withdrawing T=1

Note: It d, > d, there is a run

{O d <d,
T ’

d-1 d >d,

V,(d,dy) > pay offs T =1
V,d,,d,)— pay offs T =2
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Tax on Withdrawing T=1

Note: It d, > d, there is a run

{O d <d,
T 5

d-1 d >d,

Vild,,d,) = pay offs T =1
V,(d,,d,)— pay offs T =2

d
V.(d,.d,){ '
(d 2){d1—(d1—1)=1; d,<d

T 1s a reinvested into the bank and paid out in T=2
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Tax on Withdrawing T=1

Note: 1t d, > d, there is a run
1:{0 ; d <d,

d-1 d >d,
Vi(d,,d,) = pay offs T =1
V,(d,d,)—> pay offs T=2
V1<d1,d2>{d1

d-d-1)=1d,<d,

T 1s a reinvested into the bank and paid out in T=2

RA-Ad).
(1—&) 1 2

R(1-Ad)
(I-4)

V,(d,,d,)-

=R ;d >d,
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OPtimal Contract / Role of Banks

= Provides insurance against being an impatient (Type 1) agent

= Optimal insurance is effective because all agents are satisfied with their
consumption bundle - satisfies self-selection constraints

= Desirable Equilibrium

— Banks provide liquidity so investors receive a return in the event that they must
cash in before maturity

= Undesirable Equilibrium

— Bank Run where the bank has insufficient funds available and must liquidate at a
loss to return money to depositors
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Demand DePosit Insurance

= Deposit Insurance does achieve optimal risk sharing by eliminating runs
while preserving the bank’s ability to transform assets

— The bank is freed from dependence on the number of withdrawals
= Government Deposit Insurance through taxation

— The government taxes those who withdraw in Period 1 depending on how many
agents withdraw in Period 1 and how much they were promised

— Unique from services provided by the bank = the government adjusts the tax
after the period once it is possible to determine how many withdrawals are made
in the period
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SusPension of Convertibilit_y

= Suspension of Convertibility Contracts can be used to prevent or stop bank
runs
— Type 2 agents are dissuaded from withdrawing early in anticipation of this policy

— Regardless of other’s withdrawals, the Type 2 agent maximizes utility by waiting
until Period 2 to withdraw

 This applies even if the Type 2 agent believes everyone else will act irrationally and try
to withdraw early

= This is only an optimal contract when the normal number of withdrawals is
known (not an optimal contract if the number of withdrawals varies)
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Incentives

= Bank runs distort incentives because people panic

= Suspending convertibility when too many agents withdraw in Period 1
removes the incentive to run the bank
— Ensures that participating in a bank run is never profitable

= Moral Hazard

— If bank managers could select portfolios based on risk, there would be a trade oft
between optimal risk sharing and proper incentives for portfolio choice

— If banks anticipate a bailout, they will take on high levels of interest rate risk
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APPENDIX




Alternate Derivation

Method 2: Lagrange

max Au(d)+(-A)u(d,); 1-A)d, = (1-Ad,)R
=0=(-A)d,-(1-Ad))R

YU(dl,dzz = CV((I —Ad))R-(1- )L)dz)

Curve
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Alternate Derivation

Method 2: Lagrange

max Au(d,)+(1-A)u(d,); 1-A)d, = (1-Ad,)R
=0=(-A)d,-(1-Ad))R

YU(d1ad22 = CV((I —Ad))R-(1- )L)dz)

Curve

AU'(d,)=-CAR
(1= MU '(dy) =~C (1= )
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Alternate Derivation

Method 2: Lagrange

max Au(d,)+(-A)u(d,); 1-A)d, = (1-Ad,)R
=0=(-A)d,-(1-Ad))R

YU(dl,dzz = CV((I - Ad))R-(1- )L)dz)

Curve

AU'(d,))=-CAR

(1- MU (dy) = ~C(1- 1)

Dividing by each side, we obtain:
A U'd) AR

-AU'd,) (1-2)

48



