## Bank Runs, Deposit Insurance, and Liquidity

Douglas W. Diamond and Philip H. Dybvig Journal of Political Economy, 1983

Presented by: Carlos Hernandez, Nicole Schmit, Eric Schulman

September 21, 2015

#### Financial Fragility and the Macro Economy

## **Topic Overview**

- Economic Role of Banks: transform illiquid assets into liquid liabilities
- Bank Run: depositors expect that the bank will fail → everyone wants to withdraw deposits, even those who would normally prefer to wait
  - The bank must liquidate assets at a loss, and is at risk of failure
  - In a widespread panic (where many banks fail), the monetary system is negatively impacted
- Model demonstrates:
  - 1. Banks issuing demand deposits can improve a competitive market by providing risk sharing among people who need to consume at different times
  - 2. Undesirable equilibrium potential bank run
  - 3. Bank runs cause issues through recall of loans and termination of investment

## Agenda

**Initial Assumptions and Autarky** 

**Introducing the Bank** 

The Bank Run Equilibrium

Methods to Prevent Bank Runs

## **Initial Assumptions**

- 1. There exist three periods
  - T = 0, 1, 2; T = 0 represents the current state
- 2. There is a single good
- 3. There exist a continuum of agents with measure 1
- 4. Each agent is endowed with 1 unit of the good in their initial period (T=0)
- 5. Agents can store their goods at zero cost

## The Model: Asset Return

*With an initial endowment of 1 unit, each agent can either opt to exercise the good in period 1 or period 2* 



## The Model: Asset Return

*With an initial endowment of 1 unit, each agent can either opt to exercise the good in period 1 or period 2* 



The amount the consumer gets in period two, denoted by the return "R" or '0", is determined by the agent's behavior in period 1

# **The Model: Preferences**

*Our model will take on the assumption that people have different behaviors* 

- In period 0, all agents are identical, and do not know if they are patient / impatient
  - T = 0, 1, 2; T = 0 represents the current state
- In period 1, some agents become "patient" and others "impatient"
  - This will affect their decision making
  - $u(c_1)$ Function if the agent is impatient $u(c_2)$ Function if the agent is patient
- The probability of being impatient is  $\lambda$  for each agent in period 0

## Autarky

- Utility of the impatient person in period 1: u(1)
- Utility of the patient person in period 2: u(R)
- Expected utility in period 0:  $\lambda u(1) + (1 \lambda)u(R)$

■ 1 < R

- "Insurance" against the liquidity shock is desirable

## Agenda

#### **Initial Assumptions and Autarky**

**Introducing the Bank** 

The Bank Run Equilibrium

**Methods to Prevent Bank Runs** 

## **Banking Economy**

- Bank offers demand deposit contract  $(d_1, d_2)$
- Agents
  - Make deposits in period 0
  - Either:
    - Withdraw in period 1  $(d_1)$
    - Withdraw in period 2  $(d_2)$

#### • Free-entry banking sector: $(d_1, d_2)$ maximizes the depositor's expected utility

## **Defining Variables / Parameters**

- T = Time period
- $d_i$  = Demand for deposits in T = i
- $\lambda$  = Probability of impatient
- $1 \lambda =$  Probability of patient
- R = Returns from the second Period
- $\gamma$  = Constant relative risk aversion
- $\tau$  = Tax to fund deposit insurance
- $V_i$  = Payoffs in T=i
- $c_i$  = consuption in T=i, equivalent to  $d_i$
- $\omega_i$  = fraction of withdrawals demanded in T = i

 $f_j$  = fraction of population that withdraws before agent j  $\rho$  = ratio of withdrawals in T=1 and T=2

$$\max : \lambda u(d_{1}) + (1 - \lambda)u(d_{2})$$
s.t. 
$$\underbrace{(1 - \lambda)d_{2}}_{2} \leq \underbrace{(1 - \lambda d_{1})R}_{resources in period 2}$$
(RC)
withdrawals in period 2

 $d_1 \le d_2$  (*IC*)

Solving for eg d<sub>1</sub> and d<sub>2</sub> *Method* 1: *MRS* = *MRT*  $\frac{MU_1}{MU_2} = \frac{P_1}{P_2}$ 

Solving for eg  $d_1$  and  $d_2$ Method 1: MRS = MRT $\frac{MU_1}{MU_1} = \frac{P_1}{MU_1}$  $MU_2$   $P_2$  $U(d_1, d_2) = \lambda u(d_1) + (1 - \lambda)u(d_2)$  $MU_1 = \frac{\partial U}{\partial d_1} = \lambda u'(d_1)$  $MU_2 = \frac{\partial U}{\partial d_2} = (1 - \lambda)U(d_2)$ 

Solving for eg  $d_1$  and  $d_2$ Method 1: MRS = MRT $\underline{MU_1} = \underline{P_1}$  $MU_2$   $P_2$  $U(d_1, d_2) = \lambda u(d_1) + (1 - \lambda)u(d_2)$  $MU_1 = \frac{\partial U}{\partial d_1} = \lambda u'(d_1)$  $MU_2 = \frac{\partial U}{\partial d_2} = (1 - \lambda)U(d_2)$  $\frac{P_1}{P_2} = \frac{\Delta d_1}{\Delta d_2} = \frac{\lambda}{1 - \lambda}R$ 

Solving for eg  $d_1$  and  $d_2$ Method 1: MRS = MRT $U(d_1, d_2) = \lambda u(d_1) + (1 - \lambda)u(d_2)$  $MU_1 = \frac{\partial U}{\partial d_1} = \lambda u'(d_1)$  $MU_2 = \frac{\partial U}{\partial d_2} = (1 - \lambda)U(d_2)$  $\frac{P_1}{P_2} = \frac{\Delta d_1}{\Delta d_2} = \frac{\lambda}{1 - \lambda} R$  $\therefore \frac{u'(d_1)}{u'(d_2)} \left(\frac{\lambda}{1-\lambda}\right) = \left(\frac{\lambda}{1-\lambda}\right) R$  $\Rightarrow \frac{u'(d_1)}{u'(d_2)} = R \rightarrow Optimal \ Contract$ 





## Agenda

**Initial Assumptions and Autarky** 

**Introducing the Bank** 

The Bank Run Equilibrium

**Methods to Prevent Bank Runs** 

Let 
$$u(c) = \frac{c^{1-\gamma}}{1-\gamma}$$
  
 $0 < \gamma < 1$   
 $\gamma = 0 \Rightarrow No \ risk \ aversion$   
 $\gamma > 1 \Rightarrow More \ risk \ aversion$ 

Let 
$$u(c) = \frac{c^{1-\gamma}}{1-\gamma}$$
  
 $\gamma$  is a parameter  $\in [0,1) \cup (1,\infty)$   
 $\gamma = 0 \Rightarrow No \ risk \ aversion$   
 $\gamma > 1 \Rightarrow More \ risk \ aversion$   
 $u'(c) = c^{-\gamma}$ 

Let 
$$u(c) = \frac{c^{1-\gamma}}{1-\gamma}$$
  
 $\gamma$  is a parameter  $\in [0,1) \cup (1,\infty)$   
 $\gamma = 0 \Rightarrow No \ risk \ aversion$   
 $\gamma > 1 \Rightarrow More \ risk \ aversion$   
 $u'(c) = c^{-\gamma}$   
 $\therefore R = \left(\frac{d_1}{d_2}\right)^{-\gamma} = \left(\frac{d_2}{d_1}\right)^{\gamma}$ 

$$Let u(c) = \frac{c^{1-\gamma}}{1-\gamma}$$
  

$$u'(c) = c^{-\gamma}$$
  

$$\therefore R = \left(\frac{d_1}{d_2}\right)^{-\gamma} = \left(\frac{d_2}{d_1}\right)^{\gamma}$$
  

$$Solving: (1-\lambda)d_1 R^{\frac{1}{\gamma}} = (1-\lambda d_1)R$$
  

$$\therefore d_1 = \frac{1}{\lambda + (1-\lambda)R^{\left(\frac{1}{\gamma}-1\right)}}$$

## **Defining Variables / Parameters**

- T = Time period
- $d_i$  = Demand for deposits in T = i
- $\lambda$  = Probability of impatient
- $1 \lambda =$  Probability of patient
- R = Returns from the second Period
- $\gamma$  = Constant relative risk aversion
- $\tau$  = Tax to fund deposit insurance
- $V_i$  = Payoffs in T=i
- $c_i$  = consuption in T=i, equivalent to  $d_i$
- $\omega_i$  = fraction of withdrawals demanded in T = i

 $f_j$  = fraction of population that withdraws before agent j  $\rho$  = ratio of withdrawals in T=1 and T=2

No run scenario

$$\begin{aligned} r_1 &= 1 \\ V_1(f_n, 1) < V_2(f, 1) \forall 0 \leq f_j \end{aligned}$$

The bank would always have sufficient funds to pay agents r = 1 in T = 1Not an optimal contract because it does not provide the impatient with insurance

 $1 < c_1^{1*} < c_2^{2*} < R$  $\rho R > 1$  $1 < c_1^{1*}, R > c_2^{2*}, c_1^{1*} < c_2^{2*}$  $CRRA: U(c) = \frac{c^{1-\gamma} - 1}{1 - \gamma}; \gamma > 1$  $c_2^{2^*} = (\rho R)^{\frac{1}{\gamma}} c_1^{1^*}$  $c_1^{1^*} = \frac{R}{1}$  $(1-\lambda)(\rho R)^{\gamma} + \lambda R$  $c_2^{2^*} = \frac{R(\rho R)^{\frac{1}{\gamma}}}{1}$  $(1-\lambda)(\rho R)^{\gamma} + \lambda R$  $\gamma > 1, \rho R > 1, c_2^{2^*} > c_1^{1^*}$ 

Proof:

Since: 
$$R > 1 \Rightarrow R \ge R^{\frac{1}{\gamma}}$$
  
 $\rho < 1 \Rightarrow 1 > \rho^{\frac{1}{\gamma}}, R > (\rho R)^{\frac{1}{\gamma}}$   
 $(1 - \lambda)R > (1 - \lambda)(\rho R)^{\frac{1}{\gamma}}$   
 $R > (1 - \lambda)(\rho R)^{\frac{1}{\gamma}} + \lambda R$   
 $\Rightarrow c_1^{1*} > 1$   
Substitute:  $c_1^{1*} > 1$  into  $RC$   
 $(1 - \lambda)c_2^{2*} = R(1 + \lambda c_1^{1*}) < R(1 - \lambda)$   
 $c_2^{2*} < R$   
 $\therefore 1 < c_1^{1*} < c_2^{2*} < R$ 



The less-than-optimal equilibrium where all agents become impatient

Deposit at T = 0,  $c_1^1 = c_1^2 = c_2^1 = 0$ 

Payout in T = 1 is  $r_1$  if the fraction of the withdrawals

before the Agent J,  $(f_i)$  in T = 1

$$V_{1}(f_{j}, r_{1}) = \begin{cases} r_{1}; f_{j} < \frac{1}{r_{1}} \\ 0; f_{j} > \frac{1}{r_{1}} \end{cases}$$
$$V_{2}(f, r_{1}) = \max \{ R(1 - r_{1}f / (1 - f), 0 \}$$

f = deposit withdrawals

 $V_1$  = period 1 payoff per unit at T=1

 $f_i = #$  of withdrawer's deposits serviced

before agent's as a fraction of demand deposits

If  $f > \frac{1}{r_1}$  the bank fails because they can't afford to pay people

who withdraw in T = 2

\* Everyone receives risky return with mean of 1

\* All production interupted at  $T = 1 \Rightarrow$  inefficient

- A bank run has all agents withdraw their deposits at T = 1
  - If this is anticipated, all agents will prefer to withdraw at T = 1
  - The face value of deposits are larger than the liquidation value of the bank's assets
- The bank run equilibrium provides allocations that are worse for all agents than they would have obtained without the bank
- The "transformation" of illiquid assets into liquid assets is responsible
  - For the liquidity service provided by banks
  - For their susceptibility to runs

- Agents deposit some of their wealth even if they anticipate a positive probability of a run
  - Provided that the probability is small enough
  - The good equilibrium dominates holding assets directly
- Runs happen if the selection between the bank run equilibrium and the good equilibrium depended on some commonly observed random variable in the economy
  - This could be a bad earnings report, a commonly observed run at some other bank, a negative government forecast, or even sunspots

An optimal equilibrium for all agents

Only impatient people withdraw at T=1Patient people withdraw at T=2 $r_1$  = payment in T=1 Set  $r_1 = c_1$  = optimal consumption of Type 1 agent  $V_1(f_i, d_1) = c_1^{1*}$  $V_2(f, d_1) = c_2^{2^*}$  $c_2^{2^*} > c_1^{1^*}, \rho R > 1$ :  $V_2(f,r_1) > V_1(f_i,r_1) \rightarrow$  Satisfies self selection constraint Consumption of type 1 agent= $\omega_i V_1(f_i, d_1)$ Consumption of type 2 agent= $\omega_i V_1(f_i, d_1) + (1 - \omega_i)r_2(f, d_1)$ 

$$RRA = -C \frac{U''(C)}{U'(C)}; U''(C) < 1 \rightarrow RRA$$

CRRA Utility Function:  $\frac{C^{1-\gamma}}{1-\gamma}$ ;  $\gamma$  is a parameter  $\in [0,1) \cup (1,\infty)$ 

If two individuals have different CRRA utility functions, the one with higher value of  $\gamma$  is considered to be more risk averse.

$$RRA = -C\frac{U''(C)}{U'(C)}; U''(C) < 1 \rightarrow RRA$$

CRRA Utility Function: 
$$\frac{C^{1-\gamma}}{1-\gamma}$$
;  $\gamma$  is a parameter  $\in [0,1)$ 

If two individuals have different CRRA utility functions, the one with higher value of  $\gamma$  is considered to be more risk averse.

$$U'(C) = C^{-\gamma}$$
$$U''(C) = -\gamma C^{-\gamma-1}$$

#### **Relative Risk Aversion**

$$RRA = -C \frac{U''(C)}{U'(C)}; U''(C) < 1 \rightarrow RRA$$

CRRA Utility Function:  $\frac{C^{1-\gamma}}{1-\gamma}$ ;  $\gamma$  is a parameter  $\in [0,1)$ 

If two individuals have different CRRA utility functions, the one with higher value of  $\gamma$  is considered to be more risk averse.

 $U'(C) = C^{-\gamma}$  $U''(C) = -\gamma C^{-\gamma-1}$  $\therefore RRA = -C \frac{U''(C)}{U'(C)} = \gamma$ 

#### **Relative Risk Aversion**



## Agenda

**Initial Assumptions and Autarky** 

**Introducing the Bank** 

The Bank Run Equilibrium

Methods to Prevent Bank Runs

*Note* : If  $d_1 > d_2$  there is a run

$$\tau \begin{cases} 0 & d_1 < d_2 \\ d_1 - 1; & d_1 > d_2 \end{cases}$$
$$V_1(d_1, d_2) \rightarrow pay \text{ offs } T = 1$$
$$V_2(d_1, d_2) \rightarrow pay \text{ offs } T = 2$$

Note: If  $d_1 > d_2$  there is a run  $\tau \begin{cases} 0 & d_1 < d_2 \\ d_1 - 1; & d_1 > d_2 \end{cases}$   $V_1(d_1, d_2) \rightarrow pay offs \ T = 1$   $V_2(d_1, d_2) \rightarrow pay offs \ T = 2$  $V_1(d_1, d_2) \begin{cases} d_1 \\ d_1 - (d_1 - 1) = 1; \ d_2 < d_1 \end{cases}$ 

 $\tau$  is a reinvested into the bank and paid out in T=2

#### Tax on Withdrawing T=1

Note: If  $d_1 > d_2$  there is a run  $\tau \begin{cases} 0 & d_1 < d_2 \\ d_1 - 1; & d_1 > d_2 \end{cases}$   $V_1(d_1, d_2) \rightarrow pay offs \ T = 1$   $V_2(d_1, d_2) \rightarrow pay offs \ T = 2$  $V_1(d_1, d_2) \begin{cases} d_1 \\ d_1 - (d_1 - 1) = 1; \ d_2 < d_1 \end{cases}$ 

 $\tau$  is a reinvested into the bank and paid out in T=2

$$V_{2}(d_{1},d_{2}) \begin{cases} \frac{R(1-\lambda d_{1})}{(1-\lambda)}; \ d_{1} < d_{2} \\ \frac{R(1-\lambda d_{1})}{(1-\lambda)} = R \ ; \ d_{1} > d_{2} \end{cases}$$

## **Optimal Contract / Role of Banks**

- Provides insurance against being an impatient (Type 1) agent
- Optimal insurance is effective because all agents are satisfied with their consumption bundle → satisfies self-selection constraints
- Desirable Equilibrium
  - Banks provide liquidity so investors receive a return in the event that they must cash in before maturity
- Undesirable Equilibrium
  - Bank Run where the bank has insufficient funds available and must liquidate at a loss to return money to depositors

## **Demand Deposit Insurance**

- Deposit Insurance does achieve optimal risk sharing by eliminating runs while preserving the bank's ability to transform assets
  - The bank is freed from dependence on the number of withdrawals
- Government Deposit Insurance through taxation
  - The government taxes those who withdraw in Period 1 depending on how many agents withdraw in Period 1 and how much they were promised
  - Unique from services provided by the bank → the government adjusts the tax after the period once it is possible to determine how many withdrawals are made in the period

# **Suspension of Convertibility**

- Suspension of Convertibility Contracts can be used to prevent or stop bank runs
  - Type 2 agents are dissuaded from withdrawing early in anticipation of this policy
  - Regardless of other's withdrawals, the Type 2 agent maximizes utility by waiting until Period 2 to withdraw
    - This applies even if the Type 2 agent believes everyone else will act irrationally and try to withdraw early
- This is only an optimal contract when the normal number of withdrawals is known (not an optimal contract if the number of withdrawals varies)

## Incentives

- Bank runs distort incentives because people panic
- Suspending convertibility when too many agents withdraw in Period 1 removes the incentive to run the bank
  - Ensures that participating in a bank run is never profitable
- Moral Hazard
  - If bank managers could select portfolios based on risk, there would be a trade off between optimal risk sharing and proper incentives for portfolio choice
  - If banks anticipate a bailout, they will take on high levels of interest rate risk

#### APPENDIX

Method 2: Lagrange  $\max \lambda u(d_1) + (1 - \lambda)u(d_2); (1 - \lambda)d_2 \le (1 - \lambda d_1)R$   $\Rightarrow 0 \le (1 - \lambda)d_2 - (1 - \lambda d_1)R$   $\underbrace{\nabla U(d_1, d_2)}_{Curve} = C\nabla \left( (1 - \lambda d_1)R - (1 - \lambda)d_2 \right)$  Method 2: Lagrange  $\max \lambda u(d_1) + (1 - \lambda)u(d_2); (1 - \lambda)d_2 \le (1 - \lambda d_1)R$   $\Rightarrow 0 \le (1 - \lambda)d_2 - (1 - \lambda d_1)R$   $\underbrace{\nabla U(d_1, d_2)}_{Curve} = C\nabla ((1 - \lambda d_1)R - (1 - \lambda)d_2)$   $\lambda U'(d_1) = -C\lambda R$   $(1 - \lambda)U'(d_2) = -C(1 - \lambda)$ 

Method 2: Lagrange  $\max \lambda u(d_1) + (1 - \lambda)u(d_2); (1 - \lambda)d_2 \le (1 - \lambda d_1)R$  $\Rightarrow 0 \leq (1 - \lambda)d_2 - (1 - \lambda d_1)R$  $\underbrace{\nabla U(d_1, d_2)}_{Curve} = C\nabla \left( (1 - \lambda d_1)R - (1 - \lambda)d_2 \right)$  $\lambda U'(d_1) = -C\lambda R$  $(1-\lambda)U'(d_{2}) = -C(1-\lambda)$ Dividing by each side, we obtain:  $\frac{\lambda}{1-\lambda} \frac{U'(d_1)}{U'(d_2)} = \frac{\lambda R}{(1-\lambda)}$