Inside Money (continued)

$$
z_h^1 = -p^m m_h^1 = -L_h
$$

$$
p^2 z_h^2 = p^m m_h^1 = L_h
$$

If $m_h^1 > 0$, h is a lender. If $m_h^1 < 0$, h is a borrower.

Optimal lending $L_h = p^m m_h^1$ in period one good terms depends on P^m and m^1_h solely through the product: $p^m m^1_h$

Let $\hat{p}^m = \lambda p^m$, Then $\hat{L} = L$ if $\widehat{m}_h^1 = m_h^1/\lambda$

Combining equations:

 $z_h^1(p^2) + p^2 z_h^2(p^2) = 0$

Outside Money

 τ_h is the money tax on Mr. h $\tau_h > 0$ is tax $\tau_h < 0$ is a subsidy

Consumer Problem

max $U_h\big(x_h^1,\dots,x_h^i,$ $\dots x_h^l\big)$ subject to $px_h = p\omega_h - p^m \tau_h$ or $pz_h = -p^m \tau_h$, $h = 1$, ... , n

Equilibrium $(p, p^m) \in \mathbb{R}^{2l}_{++} \times \mathbb{R}_+$ $z_h = 0$ \boldsymbol{n} 1 $x_h \in \mathbb{R}_{++}^{2l}$, $\omega_h \in \mathbb{R}_{++}^{2l}$, $z_h \in \mathbb{R}^{2l}$ $\tau \in \mathbb{R}^n$ $\tau = (\tau_1, ..., \tau_h, ..., \tau_n)$ Summing budget constraints over h yeilds $p \sum_{h} z_h$ \boldsymbol{n} $\mathbf 1$ $= p^m$ \sum_{h} \boldsymbol{n} $\mathbf 1$

Definitions

τ is said to be <u>balanced</u> if we have $\sum_1^n \tau_h = 0$. Ricardo for intertemporal interpretation.

τ is said to be **bonafide** if there is a competitive equilibrium.

 (p, p^m) with $p^m > 0$

From summed budget constraints we have

$$
-p^m\sum_1^n \tau_h=0
$$

So either $p^m = 0$ or $\sum_1^n \tau_h = 0$ or both. An imbalanced τ is not bonafide

Bonafide ⇒ Balanced

Balanced ⇔ **Bonafide?**

Tax adjusted Endowments

$$
\widetilde{\omega}_{h} = (\widetilde{\omega}_{h}^{1}, ..., \widetilde{\omega}_{h}^{i}, ..., \widetilde{\omega}_{h}^{l})
$$

= $(\omega_{h}^{1} - P^{m} \tau_{h}, \widetilde{\omega}_{h}^{2}, ..., \widetilde{\omega}_{h}^{i}, ..., \widetilde{\omega}_{h}^{l})$

For P^m sufficiently small, $\widetilde{\omega}_h \in \mathbb{R}_{++}^{2l}$

Special Case

 $l = 1$ $x_h \in \mathbb{R}_{++}^{2l}$, $\omega_h \in \mathbb{R}_{++}^{2l}$, $p \in \mathbb{R}_{++}^{2l}$, $p^m \in \mathbb{R}_+$ $px_h = p\omega_h - p^m \tau_h$, $x_h = \omega_h - P^m \tau_h > 0$ let P^m = goods price of money $P = 1/P^m$ = general price level

Study the set of \mathcal{P}^m of equilibrium P^m : Assume $\tau_h > 0$

Then we have $0 \le P^m < (\omega_h / \tau_h)$ **Examples** $\omega = (10, 8, 6, 4, 2)$ 1. $\tau = (3, 3, 0, -3, -3)$ $\sum_{n=1}^{\infty} \tau_n = 6 - 6 = 0$ Balanced $3P^m < 10, P^m <$ 10 3 $3P^m < 8, P^m <$ 8 3 $P^m = |0,$ 8 3 2. $\tau = (3, 2, 0, -3, -3)$ $\sum \tau_h = 5 - 6 = -1 \neq 0$ $P^m = 0$ 3. $\tau = (2, 0, 0, -1, -1)$ $\sum_{n=1}^{\infty} \tau_n = 2 - 2 = 0$ $2P^m < 10$ $0 \le P^m < 5$, $P^m = [0,5)$ 4. $\tau = (1, 0, 0, 0, 0)$ $\sum \tau_h = 1 \neq 0$ $P^m = 0$