Inside Money (continued)

$$z_h^1 = -p^m m_h^1 = -L_h$$

 $p^2 z_h^2 = p^m m_h^1 = L_h$

If $m_h^1 > 0$, h is a lender. If $m_h^1 < 0$, h is a borrower.

Optimal lending $L_h = p^m m_h^1$ in period one good terms depends on P^m and m_h^1 solely through the product: $p^m m_h^1$

Let
$$\hat{p}^m = \lambda p^m$$
,
Then $\hat{L} = L$ if $\hat{m}_h^1 = m_h^1/\lambda$

Combining equations:

$$z_h^1(p^2) + p^2 z_h^2(p^2) = 0$$

Outside Money

 τ_h is the money tax on Mr. h $\tau_h > 0$ is tax $\tau_h < 0$ is a subsidy

Consumer Problem

$$\max U_h\big(x_h^1,\dots,x_h^i,\dots x_h^l\big) \text{ subject to} \\ px_h = p\omega_h - p^m\tau_h \text{ or} \\ pz_h = -p^m\tau_h \text{ , } h = 1\text{ , ...,} n$$

Equilibrium $(p, p^m) \in \mathbb{R}^{2l}_{++} \times \mathbb{R}_+$

$$\sum_{1}^{n} z_h = 0$$

$$x_h \in \mathbb{R}^{2l}_{++}, \omega_h \in \mathbb{R}^{2l}_{++}, z_h \in \mathbb{R}^{2l}$$

$$\tau \in \mathbb{R}^n \quad \tau = (\tau_1, \dots, \tau_h, \dots, \tau_n)$$

Summing budget constraints over *h* yeilds

$$p\sum_{1}^{n}z_{h}=p^{m}\sum_{1}^{n}\tau_{h}$$

Definitions

au is said to be <u>balanced</u> if we have $\sum_1^n au_h = 0$. Ricardo for intertemporal interpretation.

 τ is said to be <u>bonafide</u> if there is a competitive equilibrium.

$$(p, p^m)$$
 with $p^m > 0$

From summed budget constraints we have

$$-p^m \sum_{1}^{n} \tau_h = 0$$

So either $p^m=0$ or $\sum_1^n \tau_h=0$ or both. An imbalanced τ is not bonafide

Bonafide ⇒ Balanced

Balanced ⇔ **Bonafide?**

Tax adjusted Endowments

$$\begin{split} \widetilde{\omega}_h &= (\widetilde{\omega}_h^1, ..., \widetilde{\omega}_h^i, ..., \widetilde{\omega}_h^l) \\ &= (\omega_h^1 - P^m \tau_h \,, \widetilde{\omega}_h^2, ..., \widetilde{\omega}_h^i, ..., \widetilde{\omega}_h^l) \end{split}$$

For P^m sufficiently small, $\widetilde{\omega}_h \in \mathbb{R}^{2l}_{++}$

Special Case

$$l = 1$$

$$x_h \in \mathbb{R}^{2l}_{++}$$
 , $\omega_h \in \mathbb{R}^{2l}_{++}$, $p \in \mathbb{R}^{2l}_{++}$, $p^m \in \mathbb{R}_+$

$$px_h = p\omega_h - p^m \tau_h$$
 , $x_h = \omega_h - P^m \tau_h > 0$

let P^m = goods price of money $P = 1/P^m$ = general price level

Study the set of \mathcal{P}^m of equilibrium P^m : Assume $\tau_h > 0$

Then we have $0 \le P^m < (\omega_h/\tau_h)$

Examples

$$\omega = (10, 8, 6, 4, 2)$$

1.
$$\tau = (3, 3, 0, -3, -3)$$

$$\sum \tau_h = 6 - 6 = 0$$

Balanced

$$3P^{m} < 10, P^{m} < \frac{10}{3}$$

 $3P^{m} < 8, P^{m} < \frac{8}{3}$
 $P^{m} = \left[0, \frac{8}{3}\right)$

2.
$$\tau = (3, 2, 0, -3, -3)$$

$$\sum_{h=0}^{\infty} \tau_{h} = 5 - 6 = -1 \neq 0$$

$$P^{m} = 0$$

3.
$$\tau = (2, 0, 0, -1, -1)$$

$$\sum_{h} \tau_{h} = 2 - 2 = 0$$

$$2P^{m} < 10$$

$$0 \le P^{m} < 5, P^{m} = [0,5)$$

4.
$$\tau = (1, 0, 0, 0, 0)$$

$$\sum_{h=0}^{\infty} \tau_{h} = 1 \neq 0$$

$$P^{m} = 0$$