Cornell University

Spring 2016
ECON 4905
Financial Fragility and the Macroeconomy

Answers for Practice Questions:
 Prelim \#1

1. (Outside) Money Taxation

- 1 commodity, $l=1$, chocolate measured in ounces (oz.)
- 2 individuals, $h=1,2$
- taxes $\tau=\left(\tau_{1}, \tau_{2}\right)$ measured in dollars (\$)
- consumption $x=\left(x_{1}, x_{2}\right)$ measured in ounces
- endowments $\omega=\left(\omega_{1}, \omega_{2}\right)=(100,25)$ measured in ounces
- $x_{h}=\omega_{h}-P^{m} \tau_{h}$
a. What are the units in which P^{m} is measured?
((b) - (e)): In what follows, when is τ balanced or not, and when is τ bonafide or not? Solve for \mathcal{P}^{m}, the set of equilibrium P^{m}.
b. $\tau=(5,-5)$
c. $\tau=(1,-7)$
d. $\tau=(1,-1)$
e. $\tau=(-1,-1)$
f. In (b) - (e), in which cases are there multiple equilibria? What are the lessons from this for macroeconomics?

Solution:

a. ounces per dollar, oz. $/ \$$.
b. balanced. bonafide.

$$
\begin{aligned}
& x_{1}=100-5 P^{m}>0, \quad P^{m}<20 \\
& \mathcal{P}^{m}=[0,20)
\end{aligned}
$$

c. not balanced. not bonafide. $\mathcal{P}^{m}=\{0\}$.
d. balanced. bonafide.

$$
\begin{aligned}
& x_{1}=100-P^{m}>0, \quad P^{m}<100 \\
& \mathcal{P}^{m}=[0,100)
\end{aligned}
$$

e. not balanced. not bonafide.
$\mathcal{P}^{m}=\{0\}$.
f. The price level is indeterminate in each of the balanced/bonafide cases: (b), (d), and (e). This emphasizes - particularly in money-finance economies - that the allocation of resources depends as much on beliefs as opposed to being determined solely by fundamentals (preferences and endowments).

2. Outside Money: 2 Currency Taxation

Same set-up as in (1.), but now 2 currencies: euro ($€$) and pound sterling ($£$). In each of the following solve for the exchange rate e. Give the units of e.
a. $\tau^{€}=(-1,-1), \tau^{£}=(1,1)$
b. $\tau^{€}=(1,-1), \tau^{£}=(-5,5)$
c. $\tau^{€}=(2,1), \tau^{£}=(1,-5)$

Solution:

a.

$$
\begin{aligned}
& \sum_{h} \tau_{h}^{€}=-2 €, \quad \sum_{h} \tau_{h}^{£}=2 £ \\
& -2 P^{m €}+2 P^{m £}=0 \\
& P^{m €}: \frac{€}{\text { choc }}, \quad P^{m £}: \frac{£}{\text { choc }}, \quad \text { units } \\
& \frac{P^{m €}}{P^{m £}}=1=\frac{P^{m £}}{P^{m €}}, \quad \text { exchange rates } \\
& \frac{\frac{€}{\text { choc }}}{\frac{£}{\text { choc }}}=\frac{€}{£}, \quad \frac{\frac{£}{\text { choc }}}{\frac{€}{\text { choc }}}=\frac{£}{€} \\
& 1 \text { euro }=1 \text { pound sterling } \\
& e=1
\end{aligned}
$$

b.

$$
\begin{aligned}
& \sum_{h} \tau_{h}^{€}=0, \quad \sum_{h} \tau_{h}^{£}=0 \\
& 0 P^{m €}+0 P^{m £}=0 \\
& \mathrm{e} \text { is indeterminate }
\end{aligned}
$$

c.

$$
\begin{aligned}
& \sum_{h} \tau_{h}^{€}=3 €, \quad \sum_{h} \tau_{h}^{£}=-4 £ \\
& 3 P^{m €}-4 P^{m £}=0 \\
& 3 P^{m €}=4 P^{m £} \\
& \frac{P^{m €}}{P^{m £}}=\frac{4}{3} \\
& \frac{\frac{P^{€}}{\frac{\text { choc }}{P^{£}}}=e=\frac{4}{3}}{\text { choc }} \\
& 1 \text { pound sterling }=\frac{4}{3} \text { euro } \\
& e=1
\end{aligned}
$$

3. Inside Money: Money Market

a. $l=1, \quad t=1,2, \quad h=1,2$
b. $u_{h}\left(x_{h}^{1}, x_{h}^{2}\right)=\log x_{h}^{1}+\log x_{h}^{2}$
c. $\omega_{1}=\left(\omega_{1}^{1}, \omega_{1}^{2}\right)=(2,8)$
d. $\omega_{2}=\left(\omega_{2}^{1}, \omega_{2}^{2}\right)=(8,2)$
a. What is the equilibrium allocation $x=\left(\left(x_{1}^{1}, x_{1}^{2}\right),\left(x_{2}^{1}, x_{2}^{2}\right)\right)$ when the money market is closed?
b. What is the Pareto optimal allocation x ? Hint: you need not calculate, but you can do this for confirmation.
c. Show that the allocation x in part b is also the competitive equilibrium allocation when the money market is open. Hint: You might use the relationship between the money market equilibrium and the futures market equilibrium.

Solution:

a.

$$
x=((2,8),(8,2))=\left(\omega_{1}, \omega_{2}\right)
$$

because when $P^{m}=0$ there is no intertemporal trade (no borrowing, no lending). Autarky.
b. There are many PO allocations. One is $x_{1}=(5,5)=x_{2}$ because it maximizes equal-weighted welfare $u_{1}+u_{2}$ subject to $\omega_{1}+\omega_{2}=(10,10)$.

PO allocations are found by maximizing

$$
\log (x)+\log (y)+\lambda[\log (10-x)+\log (10-y)]
$$

subject to $(0,0) \leq(x, y) \leq(10,10)$ where $\lambda \geq 0$ is the relative weight on Mr. 2 .
Differentiating wrt x and y and setting to zero yields

$$
\frac{1}{x}=\frac{\lambda}{10-x}, \quad \frac{1}{y}=\frac{\lambda}{10-y}
$$

So we have

$$
\frac{10-x}{x}=\lambda=\frac{10-y}{y}
$$

If $\lambda=1,(x, y)=(5,5)$.
If $\lambda=0,(x, y)=(10,10)$.
If $\lambda=\infty,(x, y)=(0,0)$.
$x=y$ for all λ.
c. (CP)

$$
\begin{array}{ll}
& \max \log x_{h}^{1}+\log x_{h}^{2} \\
\text { s.t. } & p^{1} x_{h}^{1}+p^{2} x_{h}^{2}=p^{1} \omega_{h}^{1}+p^{2} \omega_{h}^{2} \\
\text { or } \quad & x_{h}^{1}+p x_{h}^{2}=\omega_{h}^{1}+p \omega_{h}^{2} \\
& x_{h}^{1}=\left(\omega_{h}^{1}+p \omega_{h}^{2}\right) / 2=x_{h}^{2} \\
\text { If } p=1, & \text { then } \\
& x_{h}^{1}=10 / 2=5=x_{h}^{2}
\end{array}
$$

