Bank Runs: The Pre-Deposit Game

Karl Shell Yu Zhang

Cornell University Xiamen University

Balasko Festschrift NYU Abu Dhabi 16 December 2015

► Refinements

- ► Refinements
 - ► Samuelson Correspondence Principle

- Refinements
 - ► Samuelson Correspondence Principle
 - Balasko's basic equilibrium manifold allowing for the use of econometrics

- Refinements
 - Samuelson Correspondence Principle
 - Balasko's basic equilibrium manifold allowing for the use of econometrics
- ► Full dynamics

- Refinements
 - Samuelson Correspondence Principle
 - Balasko's basic equilibrium manifold allowing for the use of econometrics
- ► Full dynamics
 - ► Hahn "disequilibrium" dynamics

- Refinements
 - Samuelson Correspondence Principle
 - Balasko's basic equilibrium manifold allowing for the use of econometrics
- ► Full dynamics
 - ► Hahn "disequilibrium" dynamics
 - Arrow on Samuelson's Neoclassical Synthesis

- Refinements
 - Samuelson Correspondence Principle
 - Balasko's basic equilibrium manifold allowing for the use of econometrics
- ► Full dynamics
 - Hahn "disequilibrium" dynamics
 - Arrow on Samuelson's Neoclassical Synthesis
 - Chao Gu on bank runs and herding

▶ Bryant (1980) and Diamond and Dybvig (1983): "bank runs" in the *post-deposit* game

- ▶ Bryant (1980) and Diamond and Dybvig (1983): "bank runs" in the *post-deposit* game
 - multiple equilibria in the post-deposit game

- ▶ Bryant (1980) and Diamond and Dybvig (1983): "bank runs" in the *post-deposit* game
 - multiple equilibria in the post-deposit game
- One cannot understand bank runs or the optimal contract without the full pre-deposit game

- Bryant (1980) and Diamond and Dybvig (1983): "bank runs" in the post-deposit game
 - multiple equilibria in the post-deposit game
- One cannot understand bank runs or the optimal contract without the full pre-deposit game
- Peck and Shell (2003): A sunspot-driven run can be an equilibrium in the pre-deposit game for sufficiently small run probability.

- Bryant (1980) and Diamond and Dybvig (1983): "bank runs" in the post-deposit game
 - multiple equilibria in the post-deposit game
- One cannot understand bank runs or the optimal contract without the full pre-deposit game
- Peck and Shell (2003): A sunspot-driven run can be an equilibrium in the pre-deposit game for sufficiently small run probability.
- We show how sunspot-driven run risk affects the optimal contract depending on the parameters.

▶ 2 ex-ante identical vNM consumers and 3 periods: 0, 1 and 2.

- ▶ 2 ex-ante identical vNM consumers and 3 periods: 0, 1 and 2.
- ► Endowments: *y*

- ▶ 2 ex-ante identical vNM consumers and 3 periods: 0, 1 and 2.
- ► Endowments: *y*
- ▶ Preferences: $u(c^1)$ and $v(c^1 + c^2)$:

- ▶ 2 ex-ante identical vNM consumers and 3 periods: 0, 1 and 2.
- Endowments: y
- ▶ Preferences: $u(c^1)$ and $v(c^1 + c^2)$:
 - impatient: $u(x) = A \frac{(x)^{1-b}}{1-b}$, where A > 0 and b > 1.

- ▶ 2 ex-ante identical vNM consumers and 3 periods: 0, 1 and 2.
- Endowments: y
- ▶ Preferences: $u(c^1)$ and $v(c^1 + c^2)$:
 - impatient: $u(x) = A \frac{(x)^{1-b}}{1-b}$, where A > 0 and b > 1.
 - patient: $v(x) = \frac{(x)^{1-b}}{1-b}$.

- ▶ 2 ex-ante identical vNM consumers and 3 periods: 0, 1 and 2.
- Endowments: y
- ▶ Preferences: $u(c^1)$ and $v(c^1+c^2)$:
 - impatient: $u(x) = A \frac{(x)^{1-b}}{1-b}$, where A > 0 and b > 1.
 - patient: $v(x) = \frac{(x)^{1-b}}{1-b}$.
- Types are uncorrelated (so we have aggregate uncertainty.):
 p

The Model: Technology

► Storage:

$$t = 0$$
 $t = 1$ $t = 2$
-1 1 -1 1

The Model: Technology

► Storage:

$$t = 0$$
 $t = 1$ $t = 2$
-1 1
-1 1

More Productive

$$t = 0$$
 $t = 1$ $t = 2$
-1 0 R

► Sequential service constraint (Wallace (1988))

- ► Sequential service constraint (Wallace (1988))
- Suspension of convertibility.

- ► Sequential service constraint (Wallace (1988))
- Suspension of convertibility.
- A depositor visits the bank only when he makes withdrawals.

- Sequential service constraint (Wallace (1988))
- Suspension of convertibility.
- A depositor visits the bank only when he makes withdrawals.
- When a depositor makes his withdrawal decision, he does not know his position in the bank queue.

- ► Sequential service constraint (Wallace (1988))
- Suspension of convertibility.
- ▶ A depositor visits the bank only when he makes withdrawals.
- When a depositor makes his withdrawal decision, he does not know his position in the bank queue.
- If more than one depositor chooses to withdraw, a depositor's position in the queue is random. Positions in the queue are equally probable.

Post-Deposit Game: Notation

 $lackbox{ } c \in [0,2y]$ is any feasible banking contract

Post-Deposit Game: Notation

- $c \in [0, 2y]$ is any feasible banking contract
- ▶ $\hat{c} \in [0, 2y]$ is the unconstrained optimal banking contract

Post-Deposit Game: Notation

- $c \in [0, 2y]$ is any feasible banking contract
- $\hat{c} \in [0, 2y]$ is the unconstrained optimal banking contract
- $c^* \in [0, 2y]$ is the constrained optimal banking contract

Post-Deposit Game: c^{early}

▶ A patient depositor chooses early withdrawal when he expects the other depositor to also choose early withdrawal.

$$[v(c) + v(2y - c)]/2 > v[(2y - c)R]$$

Post-Deposit Game: c^{early}

▶ A patient depositor chooses early withdrawal when he expects the other depositor to also choose early withdrawal.

$$[v(c) + v(2y - c)]/2 > v[(2y - c)R]$$

▶ Let c^{early} be the value of c such that the above inequality holds as an equality.

Post-Deposit Game: c^{wait}

 A patient depositor chooses late withdrawal when he expects the other depositor, if patient, to also choose late withdrawal. (ICC)

$$pv[(2y-c)R] + (1-p)v(yR) \ge p[v(c) + v(2y-c)]/2 + (1-p)v(c).$$

Post-Deposit Game: cwait

 A patient depositor chooses late withdrawal when he expects the other depositor, if patient, to also choose late withdrawal. (ICC)

$$pv[(2y-c)R] + (1-p)v(yR) \ge p[v(c) + v(2y-c)]/2 + (1-p)v(c).$$

▶ Let c^{wait} be the value of c such that the above inequality holds as an equality.

Post-Deposit Game: "usual" values of the parameters

 $ightharpoonup c^{early} < c^{wait}$ if and only if

$$b < \min\{2, 1 + \ln 2 / \ln R\}$$

Post-Deposit Game: "usual" values of the parameters

We call these values of b and R "usual" since the set of DSIC contracts (i.e, [0, c^{wait}]) is a strict subset of BIC contracts (i.e, [0, c^{early}]).

Post-Deposit Game: "usual" values of the parameters

- We call these values of b and R "usual" since the set of DSIC contracts (i.e, [0, c^{wait}]) is a strict subset of BIC contracts (i.e, [0, c^{early}]).
- ► The interval (c^{early}, c^{wait}) is the region of c for which the patient depositors' withdrawal decisions exhibit strategic complementarity.

► The values of *b* and *R* are "unusual" when the set of DSIC contracts is the same as the set of BIC contracts.

- ► The values of *b* and *R* are "unusual" when the set of DSIC contracts is the same as the set of BIC contracts.
- According to the Revelation Principle, when we search for the optimal contract we only have to focus on the BIC contracts.

- ► The values of b and R are "unusual" when the set of DSIC contracts is the same as the set of BIC contracts.
- According to the Revelation Principle, when we search for the optimal contract we only have to focus on the BIC contracts.
- ► Hence, for the "unusual" parameters, the optimal contract must be DSIC and the bank runs are not relevant.

▶ The "unusual" values of b and R can cause $c^{early} \ge c^{wait}$.

- ▶ The "unusual" values of b and R can cause $c^{early} > c^{wait}$.
- (c^{wait}, c^{early}] is the region of c for which the patient depositors' withdrawal decisions exhibit strategic substitutability.

Figure 8. Equilibrium in the Post-Deposit Game strategic substitutability:

A patient depositor withdraws late if and only if he expects that the other patient depositor withdraws early. $C = \frac{c^{early}}{c^{early}}$ Only the non-run equilibrium exists.

Only the run equilibrium exists.

- ▶ The "unusual" values of b and R can cause $c^{early} \ge c^{wait}$.
- (c^{wait}, c^{early}] is the region of c for which the patient depositors' withdrawal decisions exhibit strategic substitutability.

Figure 8. Equilibrium in the Post-Deposit Game strategic substitutability:

A patient depositor withdraws late if and only if he expects that the other patient depositor withdraws early. $C = \frac{c^{early}}{c^{early}}$ Only the non-run equilibrium exists.

Only the run equilibrium exists.

► For the optimal contract, the only relevant region is $[0, c^{wait}]$ (i.e., BIC contracts).

► For the rest of the presentation, we focus on the "usual" values of *b* and *R*.

- ► For the rest of the presentation, we focus on the "usual" values of *b* and *R*.
- ▶ Whether bank runs occur in the *pre-deposit* game depends on whether the optimal contract c^* belongs to the region of strategic complementarity (i.e., $c \in (c^{early}, c^{wait}]$).

- ► For the rest of the presentation, we focus on the "usual" values of *b* and *R*.
- ▶ Whether bank runs occur in the *pre-deposit* game depends on whether the optimal contract c^* belongs to the region of strategic complementarity (i.e., $c \in (c^{early}, c^{wait}]$).
- ▶ To characterize the optimal contract, we divide the problem into three cases depending on \hat{c} , the contract supporting the unconstrained efficient allocation.

- ► For the rest of the presentation, we focus on the "usual" values of *b* and *R*.
- ▶ Whether bank runs occur in the *pre-deposit* game depends on whether the optimal contract c^* belongs to the region of strategic complementarity (i.e., $c \in (c^{early}, c^{wait}]$).
- ▶ To characterize the optimal contract, we divide the problem into three cases depending on \hat{c} , the contract supporting the unconstrained efficient allocation.
 - $ightharpoonup \widehat{c} \le c^{early} \text{ (Case 1)}$

- ► For the rest of the presentation, we focus on the "usual" values of *b* and *R*.
- ▶ Whether bank runs occur in the *pre-deposit* game depends on whether the optimal contract c^* belongs to the region of strategic complementarity (i.e., $c \in (c^{early}, c^{wait}]$).
- ▶ To characterize the optimal contract, we divide the problem into three cases depending on \hat{c} , the contract supporting the unconstrained efficient allocation.
 - $ightharpoonup \widehat{c} \le c^{early} \text{ (Case 1)}$
 - $ightharpoonup \widehat{c} \in (c^{early}, c^{wait}]$ (Case 2)

- ► For the rest of the presentation, we focus on the "usual" values of *b* and *R*.
- ▶ Whether bank runs occur in the *pre-deposit* game depends on whether the optimal contract c^* belongs to the region of strategic complementarity (i.e., $c \in (c^{early}, c^{wait}]$).
- ▶ To characterize the optimal contract, we divide the problem into three cases depending on \hat{c} , the contract supporting the unconstrained efficient allocation.
 - $ightharpoonup \widehat{c} \le c^{early} \text{ (Case 1)}$
 - $ightharpoonup \widehat{c} \in (c^{early}, c^{wait}]$ (Case 2)
 - $ightharpoonup \widehat{c} > c^{wait}$ (Case 3)

Impulse parameter A and the 3 cases

 $ightharpoonup \widehat{c}$ is the c in [0,2y] that maximizes

$$\widehat{W}(c) = p^2[u(c) + u(2y - c)] + 2p(1 - p)[u(c) + v[(2y - c)R]] + 2(1 - p)^2v(yR).$$

Impulse parameter A and the 3 cases

 $ightharpoonup \widehat{c}$ is the c in [0,2y] that maximizes

$$\widehat{W}(c) = p^2[u(c) + u(2y - c)] + 2p(1 - p)[u(c) + v[(2y - c)R]] + 2(1 - p)^2v(yR).$$

Þ

$$\widehat{c} = \frac{2y}{\{p/(2-p) + 2(1-p)/[(2-p)AR^{b-1}]\}^{1/b} + 1}.$$

Impulse parameter A and the 3 cases

 $ightharpoonup \widehat{c}$ is the c in [0,2y] that maximizes

$$\widehat{W}(c) = p^2[u(c) + u(2y - c)] + 2p(1 - p)[u(c) + v[(2y - c)R]] + 2(1 - p)^2v(yR).$$

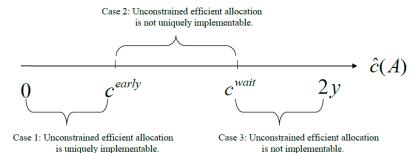
$$\widehat{c} = \frac{2y}{\{p/(2-p) + 2(1-p)/[(2-p)AR^{b-1}]\}^{1/b} + 1}.$$

 $ightharpoonup \widehat{c}(A)$ is an increasing function of A.

Parameter A and the 3 Cases

Neither c^{early} nor c^{wait} depends on A

Figure 2. Three Cases



► The parameters are

$$b = 1.01$$
; $p = 0.5$; $y = 3$; $R = 1.5$

► The parameters are

$$b = 1.01$$
; $p = 0.5$; $y = 3$; $R = 1.5$

We see that b and R satisfy the condition which makes the set of contracts permiting strategic complementarity non-empty. We have that c^{early} = 4.155955 and c^{wait} = 4.280878.

► The parameters are

$$b = 1.01$$
; $p = 0.5$; $y = 3$; $R = 1.5$

- We see that b and R satisfy the condition which makes the set of contracts permiting strategic complementarity non-empty. We have that c^{early} = 4.155955 and c^{wait} = 4.280878.
- $A^{early} = 6.217686$ and $A^{wait} = 10.27799$.

▶ The parameters are

$$b = 1.01$$
; $p = 0.5$; $y = 3$; $R = 1.5$

- We see that b and R satisfy the condition which makes the set of contracts permiting strategic complementarity non-empty. We have that c^{early} = 4.155955 and c^{wait} = 4.280878.
- $A^{early} = 6.217686$ and $A^{wait} = 10.27799$.
- ▶ If $A \le A^{early}$, we are in Case 1; If $A^{early} < A \le A^{wait}$, we are in Case 2; If $A > A^{wait}$, we are in Case 3.

▶ Case 1: The unconstrained efficient allocation is DSIC, i.e., $\hat{c} < c^{early}$.

- ▶ Case 1: The unconstrained efficient allocation is DSIC, i.e., $\hat{c} < c^{early}$.
- ▶ It is straightforward to see that the optimal contract for the pre-deposit game supports the unconstrained efficient allocation

$$c^*(s) = \widehat{c}$$
.

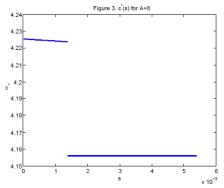
and that the optimal contract doesn't tolerate runs.

▶ Case 2: The unconstrained efficient allocation is BIC but not DSIC, i.e., $c^{early} < \hat{c} \le c^{wait}$.

- ▶ Case 2: The unconstrained efficient allocation is BIC but not DSIC, i.e., $c^{early} < \hat{c} \le c^{wait}$.
- The optimal contract c*(s) satisfies: (1) if s is larger than the threshold probability s₀, the optimal contract is run-proof and c*(s) = c^{early}. (2) if s is smaller than s₀, the optimal contract c*(s) tolerates runs and it is a strictly decreasing function of s.

▶ Using the same parameters as the previous example. Let A=8. (We have seen that we are in Case 2 if $6.217686 < A \le 10.27799$.)

- ▶ Using the same parameters as the previous example. Let A=8. (We have seen that we are in Case 2 if $6.217686 < A \le 10.27799$.)
- c^* switches to the best run-proof contract (i.e. c^{early}) when $s > s_0 = 1.382358 \times 10^{-3}$.



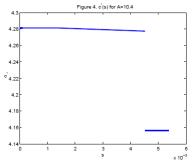
▶ Case 3: The unconstrained efficient allocation is not BIC, i.e., $c^{wait} < \hat{c}$.

- ▶ Case 3: The unconstrained efficient allocation is not BIC, i.e., $c^{wait} < \hat{c}$.
- The optimal contract c*(s) satisfies: (1) If s is larger than the threshold probability s₁, we have c*(s) = cearly and the optimal contract is run-proof. (2) If s is smaller than s₁, the optimal contract c*(s) tolerates runs and it is a weakly decreasing function of s. Furthermore, we have c*(s) = cwait for at least part of the run tolerating range of s.

▶ Using the same parameters as in the previous example. Let A=10.4. (We have seen that we are in Case 2 if A>10.27799.)

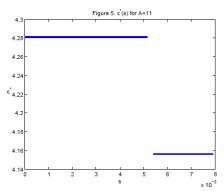
- ▶ Using the same parameters as in the previous example. Let A=10.4. (We have seen that we are in Case 2 if A>10.27799.)
- ▶ c^* switches to the best run-proof (i.e. c^{early}) when $s > 4.524181 \times 10^{-3}$.

- ▶ Using the same parameters as in the previous example. Let A=10.4. (We have seen that we are in Case 2 if A>10.27799.)
- ▶ c^* switches to the best run-proof (i.e. c^{early}) when $s > 4.524181 \times 10^{-3}$.
- ▶ ICC becomes non-binding when $s \ge 1.719643 \times 10^{-3}$.



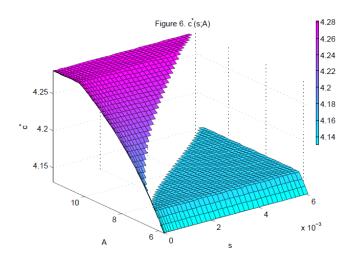
▶ Let A = 11. (PS case)

- ▶ Let A = 11. (PS case)
- ▶ c^* switches to the best run-proof (i.e. c^{early}) when $s > 5.281242 \times 10^{-3}$.



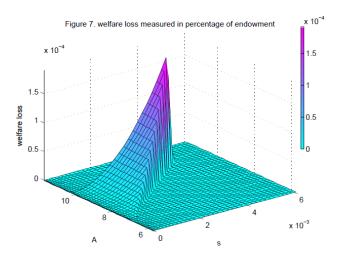
The Optimal Contract

$ightharpoonup c^*$ versus s and A



The Optimal Contract

• welfare loss from using the corresponding optimal bang-bang contract instead of $c^*(s)$



► The general form of the optimal contract to the *pre-deposit* game is analyzed.

- ► The general form of the optimal contract to the *pre-deposit* game is analyzed.
- ► The unconstrained efficient allocation falls into one of the three cases:

- ► The general form of the optimal contract to the *pre-deposit* game is analyzed.
- ► The unconstrained efficient allocation falls into one of the three cases:
 - ▶ (1) DSIC

- ► The general form of the optimal contract to the pre-deposit game is analyzed.
- ► The unconstrained efficient allocation falls into one of the three cases:
 - ▶ (1) DSIC
 - ▶ (2) BIC but not DSIC

- The general form of the optimal contract to the pre-deposit game is analyzed.
- ► The unconstrained efficient allocation falls into one of the three cases:
 - ▶ (1) DSIC
 - ▶ (2) BIC but not DSIC
 - ▶ (3) not BIC.

▶ In Cases 2 and 3, the optimal contract tolerates runs when the run probability is sufficiently small:

- ▶ In Cases 2 and 3, the optimal contract tolerates runs when the run probability is sufficiently small:
- In Case 2, the optimal contract adjusts continuously and becomes strictly more conservative as the run probabilities increases.

- ▶ In Cases 2 and 3, the optimal contract tolerates runs when the run probability is sufficiently small:
- In Case 2, the optimal contract adjusts continuously and becomes strictly more conservative as the run probabilities increases.
 - ► The optimal allocation is never a mere randomization over the unconstrained efficient allocation and the corresponding run allocation from the post-deposit game. Hence this is also a contribution to the sunspots literature: another case in which SSE allocations are not mere randomizations over certainty allocations.

▶ In Case 3, the ICC binds for small run-probabilities, which forces the contract to be more conservative than it would have been without the ICC. Hence, for Case 3, the optimal contract does not change with *s* until the ICC no longer binds.

- ▶ In Case 3, the ICC binds for small run-probabilities, which forces the contract to be more conservative than it would have been without the ICC. Hence, for Case 3, the optimal contract does not change with *s* until the ICC no longer binds.
 - For small s, the optimal allocation is a randomization over the constrained efficient allocation and the corresponding run allocation from the post-deposit game.