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» Balasko's basic equilibrium manifold allowing for the use of

econometrics

» Full dynamics

» Hahn “disequilibrium” dynamics
> Arrow on Samuelson's Neoclassical Synthesis

» Chao Gu on bank runs and herding
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Introduction to Bank Runs

v

Bryant (1980) and Diamond and Dybvig (1983): “bank runs”
in the post-deposit game

» multiple equilibria in the post-deposit game
» One cannot understand bank runs or the optimal contract
without the full pre-deposit game

» Peck and Shell (2003): A sunspot-driven run can be an
equilibrium in the pre-deposit game for sufficiently small run
probability.

» We show how sunspot-driven run risk affects the optimal

contract depending on the parameters.
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The Model: Consumers

> 2 ex-ante identical vNM consumers and 3 periods: 0, 1 and 2
» Endowments: y

» Preferences: u(c!) and v(c1 +c?):

)1

> impatient: u(x) , where A> 0 and b > 1.
) =

) ( 1 b
» patient: v(x

» Types are uncorrelated (so we have aggregate uncertainty.)
p
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The Model

» Sequential service constraint (Wallace (1988))
» Suspension of convertibility.
» A depositor visits the bank only when he makes withdrawals.

» When a depositor makes his withdrawal decision, he does not

know his position in the bank queue.

» If more than one depositor chooses to withdraw, a depositor’s
position in the queue is random. Positions in the queue are

equally probable.

6/28



Post-Deposit Game: Notation

» ¢ € [0,2y] is any feasible banking contract

28



Post-Deposit Game: Notation

» ¢ € [0,2y] is any feasible banking contract

» ¢ € [0,2y] is the unconstrained optimal banking contract

28



Post-Deposit Game: Notation

» ¢ € [0,2y] is any feasible banking contract
» ¢ € [0,2y] is the unconstrained optimal banking contract

» c* € [0,2y] is the constrained optimal banking contract

28



Post-Deposit Game: ¢

» A patient depositor chooses early withdrawal when he expects

the other depositor to also choose early withdrawal.

[v(e) +v(2y = )]/2 > v[(2y — ¢)R]

28



Post-Deposit Game: ¢

» A patient depositor chooses early withdrawal when he expects

the other depositor to also choose early withdrawal.
[v(c)+v(2y —c)]/2 > v[(2y — ¢)R]

> Let c®™ be the value of ¢ such that the above inequality

holds as an equality.

28



Post-Deposit Game: "'t

> A patient depositor chooses late withdrawal when he expects

the other depositor, if patient, to also choose late withdrawal.

(1CC)

pv[(2y = )R]+ (1 = p)v(yR) = plv(c) +v(2y = )] /2+ (1= p)v(c).



Post-Deposit Game: ¢t

> A patient depositor chooses late withdrawal when he expects

the other depositor, if patient, to also choose late withdrawal.

(1CC)

pv[(2y = )R]+ (1 = p)v(yR) = plv(c) +v(2y = )] /2+ (1= p)v(c).
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Post-Deposit Game: “usual” values of the parameters

> coarly < cwait if and only if

b<min{2,1+In2/InR}

The post-deposit game has two equilibria: one run and one non-run.

Al
4 A
| | ! | » C
earl wait
0 ct c 2
Only the non-run equilibrium exists. Only the run equilibrium exists.
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» The values of b and R are “unusual” when the set of DSIC

contracts is the same as the set of BIC contracts.

» According to the Revelation Principle, when we search for the

optimal contract we only have to focus on the BIC contracts.

» Hence, for the "unusual’ parameters, the optimal contract

must be DSIC and the bank runs are not relevant.
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» The “unusual”’ values of b and R can cause ¢ > cwait,

> (c"it, cearly] is the region of ¢ for which the patient
depositors’ withdrawal decisions exhibit strategic
substitutability.

Figure 8. Equilibrium in the Post-Deposit Game

strategic substitutability:
A patient depositor withdraws late if and 051(11’ he expects that the other patient depositor withdraws early.
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> (c"it, cearly] is the region of ¢ for which the patient
depositors’ withdrawal decisions exhibit strategic

substitutability.

Figure 8. Equilibrium in the Post-Deposit Game

strategic substitutability:
A patient depositor withdraws late if and 051(11’ he expects that the other patient depositor withdraws early.
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Only the non-run equilibrium exists. Only the run equilibrium exists.

» For the optimal contract, the only relevant region is [0, "]

(i.e., BIC contracts). 13/28
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Pre-Deposit Game

> For the rest of the presentation, we focus on the "usual"
values of b and R.

» Whether bank runs occur in the pre-deposit game depends on
whether the optimal contract ¢* belongs to the region of
strategic complementarity (i.e., c € (c®, c"ait]).

» To characterize the optimal contract, we divide the problem
into three cases depending on ¢, the contract supporting the
unconstrained efficient allocation.

¢ < ¢l (Case 1)

» T (c®rly, cwait] (Case 2)
<>

c"ait (Case 3)
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Impulse parameter A and the 3 cases

» Cis the c in [0, 2y] that maximizes

W(c) = plu(c) + u(2y — )] +2p(1 = p)[u(c) + v[(2y — c)R]]
+2(1—-p)2v(yR).

2y
{p/(2=p)+2(1—p)/[2 - p)ARFI[} /b +1'

C =

» ¢(A) is an increasing function of A.
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Parameter A and the 3 Cases

> Neither ¢ nor c*?* depends on A

Figure 2, Three Cases

Case 2: Unconstrained efficient allocation
is not uniquely implementable.

Al
r A .
| | >
‘ ‘ > C( A)
early wait
0 c c 2y
Case 1: Unconstrained efficient allocation Case 3: Unconstrained efficient allocation
is uniquely implementable. is not implementable.
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28



Example

» The parameters are

b=101;p=05y=3;R=15

17 /28



Example

» The parameters are
b=101;p=05y=3;R=15

> We see that b and R satisfy the condition which makes the set
of contracts permiting strategic complementarity non-empty.
We have that c®™Y = 4.155955 and c""t = 4.280878.

28



Example

» The parameters are
b=101;p=05y=3;R=15

> We see that b and R satisfy the condition which makes the set
of contracts permiting strategic complementarity non-empty.
We have that c®™Y = 4.155955 and c""t = 4.280878.

> A®Y = 6.217686 and A"t = 10.27799.

28



Example

v

The parameters are
b=101;p=05y=3;R=15

We see that b and R satisfy the condition which makes the set
of contracts permiting strategic complementarity non-empty.
We have that c®™Y = 4.155955 and c""t = 4.280878.

Aearly — 6.217686 and A"t = 10.27799.

If A< Ay e are in Case 1; If A2y < A < AWt \ve are
in Case 2: If A > AWt \we are in Case 3.
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The Optimal Contract: Case 1

» Case 1: The unconstrained efficient allocation is DSIC, i.e.,
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The Optimal Contract: Case 1

» Case 1: The unconstrained efficient allocation is DSIC, i.e.,

< Cearly

» |t is straightforward to see that the optimal contract for the
pre-deposit game supports the unconstrained efficient
allocation

c*(s) =c¢.

and that the optimal contract doesn’t tolerate runs.
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The Optimal Contract: Case 2
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» Case 2: The unconstrained efficient allocation is BIC but not
DSIC, i.e., ¢l <& < cwait,

» The optimal contract c*(s) satisfies: (1) if s is larger than the
threshold probability sp, the optimal contract is run-proof and
c*(s) = ¢ . (2) if s is smaller than sp, the optimal
contract c*(s) tolerates runs and it is a strictly decreasing

function of s.
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The Optimal Contract: Case 2

> Using the same parameters as the previous example. Let
A = 8. (We have seen that we are in Case 2 if
6.217686 < A < 10.27799.)
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The Optimal Contract: Case 2

> Using the same parameters as the previous example. Let
A = 8. (We have seen that we are in Case 2 if
6.217686 < A < 10.27799.)

> c* switches to the best run-proof contract (i.e. ¢®”) when
s > sp = 1.382358 x 1073,

Figure 3. ¢ (s) for A=8
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The Optimal Contract: Case 3

» Case 3: The unconstrained efficient allocation is not BIC, i.e.,
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21/28



The Optimal Contract: Case 3

» Case 3: The unconstrained efficient allocation is not BIC, i.e.,
it < €.

> The optimal contract c*(s) satisfies: (1) If s is larger than the
threshold probability s;, we have c*(s) = ¢ and the
optimal contract is run-proof. (2) If s is smaller than s;, the
optimal contract c¢*(s) tolerates runs and it is a weakly
decreasing function of s. Furthermore, we have c*(s) = c"2't

for at least part of the run tolerating range of s.
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The Optimal Contract: Case 3

» Using the same parameters as in the previous example. Let
A = 10.4. (We have seen that we are in Case 2 if
A > 10.27799.)
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The Optimal Contract: Case 3

» Using the same parameters as in the previous example. Let
A = 10.4. (We have seen that we are in Case 2 if
A > 10.27799.)

> c* switches to the best run-proof (i.e. c®) when
s > 4524181 x 1073.

» |CC becomes non-binding when s > 1.719643 x 1073,

Figure 4. ¢(s) for A=10.4
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The Optimal Contract: Case 3

> Let A=11. (PS case)
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The Optimal Contract: Case 3

> Let A=11. (PS case)

» c* switches to the best run-proof (i.e. c®”) when
s > 5.281242 x 1072

Figure 5. ¢ (s) for A=11
T T T
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The Optimal

Contract

» c* versus s and A

425

o 42

4.15

Figure 6. c‘(s;A)

428
426
4.24
422
42

418
416

4.14
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The Optimal Contract

> welfare loss from using the corresponding optimal bang-bang

contract instead of c*(s)

Figure 7. welfare loss measured in percentage of endowment x 10

4

x 10

15

welfare loss
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Summary and Concluding Remark

» The general form of the optimal contract to the pre-deposit
game is analyzed.
» The unconstrained efficient allocation falls into one of the
three cases:
» (1) DSIC
» (2) BIC but not DSIC
» (3) not BIC.
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Summary and Concluding Remark

> In Cases 2 and 3, the optimal contract tolerates runs when

the run probability is sufficiently small:

» In Case 2, the optimal contract adjusts continuously and
becomes strictly more conservative as the run probabilities

increases.

» The optimal allocation is never a mere randomization over the
unconstrained efficient allocation and the corresponding run
allocation from the post-deposit game. Hence this is also a
contribution to the sunspots literature: another case in which
SSE allocations are not mere randomizations over certainty

allocations.
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forces the contract to be more conservative than it would have
been without the ICC. Hence, for Case 3, the optimal contract

does not change with s until the ICC no longer binds.
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» In Case 3, the ICC binds for small run-probabilities, which
forces the contract to be more conservative than it would have
been without the ICC. Hence, for Case 3, the optimal contract
does not change with s until the ICC no longer binds.

> For small s, the optimal allocation is a randomization over the

constrained efficient allocation and the corresponding run

allocation from the post-deposit game.
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