Economics 6130-2

Macroeconomics I, Part2
Fall 2016
Problem Set 1
Due Wendesday before class, October 26, 2016

1 Money Taxation

Consider an economy with a single commodity, $\ell=1$, chocolate. There are 5 consumers, so $n=5$. The endowments are defined as

$$
\begin{aligned}
\omega & =\left(\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}, \omega_{5}\right) \\
& =(50,40,30,20,10)
\end{aligned}
$$

1.1 A Single Currency

There is one money. The chocolate price of money is $P^{m} \geq 0$. In each of the following cases, solve for the set \mathscr{P}^{m} of equilibrium prices P^{m}, given the following tax policies τ. Provide the units in which the variables are measured.
a) $\tau=\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \tau_{5}\right)=(1,1,0,0,-2)$
b) $\tau=(10,5,0,-8,-7)$
c) $\tau=(20,2,1,-2,-20)$

1.2 Two Monies

Consider a scenario where there are 2 monies, red dollars R and blue dollars B, with respective chocolate prices of money, $P^{R} \geq 0$ and $P^{B} \geq 0$.

In each of the following cases, solve for the equilibrium exchange rate between B and R. Do these depend on the endowments ω ? Give the economic explanation for your answer.
a) $\tau^{R}=(1,1,1,0,-2)$ and $\tau^{B}=(1,0,0,0,-2)$
b) $\tau^{R}=(1,1,0,-1,-2)$ and $\tau^{B}=(1,1,1,0,-2)$
c) $\tau^{R}=(3,2,1,0,-6)$ and $\tau^{B}=(4,0,-1,-1,-2)$

1.3 The Absence of Money Illusion

Explain the difference between the "absence of money illusion" and the "quantity theory of money". Be precise (with symbols).

