Notes on Disintermediation

Karl Shell Yu Zhang

Cornell University Xiamen University

CU/PSU Macro Workshop September 8-9, 2018

- 2-consumer model based on PS (JME)
- 2 financial systems
 - Unified (UB)
 - Separated (GSB)
- ▶ panic-based runs are sunspot-driven, PS(JPE), EK(EER)

Goals:

- Evaluate relative performances of UB, GSB, and autarky (A):
 - Consumer welfare
 - Run susceptibility
 - Disintermediation (i.e., bank is strictly inferior to autarky)
- Quantitative experiments:
 - Welfare gain (or loss) in terms of percent of endowment in moving from one regime to another.

Preview of Results:

► UB

- not susceptible to panic-based runs
- not susceptible to disintermediation
- welfare non-strictly dominates GSB and A

GSB

- may be susceptible to runs
- may be susceptible to disintermediation
- calculated loss from GSB can be compared to costs of phenomena outside the model (e.g., moral hazard)

Consumption Opportunities

- Periods: T = 0, 1, 2
- Impatient I
 - Best in T = 1, \overline{u}
 - In T = 2, $\beta \overline{u}$, $0 < \beta < 1$
- Patient P
 - Best in T = 2, \overline{u}
 - P never chooses T = 1 (or $\beta \overline{u}$)
- Left over balances, $u(\cdot)$.
 - ▶ u' > 0, u'' < 0</p>

The Model: Choice of investments

- Endowment $y \ge 1$
- (1γ) is fraction of y invested in A, illiquid
- γ is fraction of y invested in B, liquid
- Aggregate endowment, 2y
- Aggregate liquidity, $2\gamma y$
- ▶ Return on A: 0 of harvested early, R_A if harvested late
- ▶ Return on *B*: 1 if harvested early, *R_B* if harvested late

$$\blacktriangleright \Delta = R_A - R_B > 0$$

Intrinsic Uncertainty (Types)

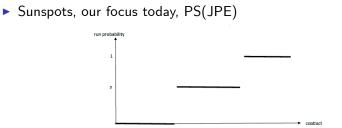
There are 2 possible realizations, R1 and R2:

- R1: There is one I and one P.
- ▶ R2: There are 2 P's.
- Prob(R1) = q, Prob(R2) = (1 q).
- Given R1, the probability that a given consumer is I is $\frac{1}{2}$.
- Types are realized in T = 1.

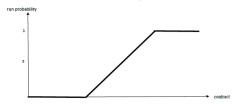
Sequential Service

- Positions in queue are equally probable.
- Second in queue sees what first in queue chooses.
- Second in line can walk away.
- Strategic complementarity for all parameters.

Extrinsic Uncertainty (Sunspots)



Sunspots, future work, inspired by EK(EER), e.g.



Timing

► *T* = 0

- Government chooses UB or GSB, always allowing A.
- Bank chooses portfolio and designs contract
- Consumer chooses to deposit or not.
- ► If consumer chooses A, he determines his portfolio.

T=1 and T=2

- Analyzing dynamic problem right-to-left.
- Characterize the set of parameters for which the consumer withdraws if he is able.
- An impatient who is able to withdraw at T = 1
 - prefers to withdraw in T = 1 to T = 2 iff

$$\overline{u} + u(yR_A - R_A) > \beta\overline{u} + u(yR_A - R_A + R_B - 1).$$
(1)

• prefers to withdraw in T = 1 rather than defer iff

$$\overline{u} + u(yR_A - R_A) > u(yR_A - R_A + R_B).$$
(2)

T=1,2 con't

An impatient who is unable to withdraw in T = 1, prefers T = 2 to defering iff

$$\beta \overline{u} + u(yR_A - 1) > u(yR_A). \tag{3}$$

We analyze in our paper the set Z of parameter values satisfying inequalities (1)-(3). Z is the set of parameters in which liquidity would be chosen if types were known ex-ante.

T=1,2 con't

- ▶ Given the other parameter values, there is a critical value u
 ₀ such that for u
 > u
 ₀ consumption opportunities are undertaken if the consumer is able to do so.
- $(1/\overline{u}_0)$ serves as a measure of *ideal* resource efficiency.
- If $\overline{u} < \overline{u}_0$, it is never worthwhile to hold the liquid asset.
- In what follows next, we assume that the parameter values lie in the set Z.
- Later we will analyze parameters outside Z.

Autarky (A)

- $W_1^A > W_0^A$ iff $\overline{u} > \overline{u}_4$, where W_i^A is expected utility when holding *i* units of the liquid asset, where \overline{u}_4 is the critical value.
- ► u
 ₀ < u
 ₄. Holding the liquid asset ex-ante is more costly than holding it ex-post (after the types are known).

- To satisfy the consumption opportunity, UB needs to hold 1/2 unit of liquid asset per depositor.
- $W_{1/2}^{UB} > W_0^{UB}$ iff $\overline{u} > \overline{u}_1$, where \overline{u}_1 is the critical value.
- ► UB can pool the liquidity assets among the depositors. Therefore, it is less costly to satisfy the urgent consumption opportunity through UB than in autarky. That is, u
 ₁ < u
 ₄.

UB vs Autarky (A)

•
$$W_{1/2}^{UB} > W_1^A$$
 and $W_0^{UB} = W_0^A$.

▶ Let $W^{UB} = \max\{W_{1/2}^{UB}, W_0^{UB}\}$ and $W^A = \max\{W_1^A, W_0^A\}$, we have

•
$$W^{UB} > W^A$$
 if and only if $\overline{u} > \overline{u}_1$.

▶ \overline{u}_1 is the threshold of \overline{u} above which UB strictly dominates A.

GSB vs Autarky

- Compared to UB, GSB is restricted by:
 - bank runs
 - ICC requires the bank to hold more than 1/2 unit of liquid asset per depositor.
- Bank runs make the expected utility of a depositor in GSB weakly decreasing in s.
- The minimum requirement of liquid asset holding makes GSB dominated by UB even if s = 0.
- ▶ Therefore, $W^{GSB}(s_0) < W^{GSB}(0) < W^{UB}$, where
 - W^{GSB}(s) denotes the expected utility of a depositor when the sunspot-driven run probability is s.
 - s₀ denotes the threshold of s beyond which the GSB switches to the run-proof contract.

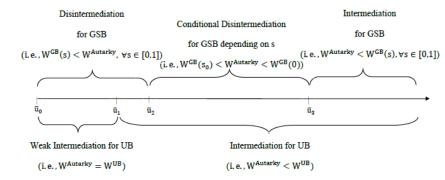
GSB vs A

$$W^{GSB}(s) > W_1^A$$
 for all s .

- This is because the lower bound of W^{GSB}(s) is W^{GSB}(s₀) in which the contract is run-proof. And in the run-proof contract, the per person liquid asset holding is strictly smaller than 1.
- Therefore, whether disintermediation occurs depends on the comparison between W^{GSB}(s) and W₀^A.

- $W^{GSB}(0) > W_0^A$ if and only if $\overline{u} > \overline{u}_2$, where \overline{u}_2 is the critical value.
- $W^{GSB}(s_0) > W_0^A$ if and only if $\overline{u} > \overline{u}_3$, where \overline{u}_3 is the critical value.
- ▶ We have $\overline{u}_2 < \overline{u}_3$. Each of these two thresholds is larger than \overline{u}_1 . This is because $W^{GSB}(s_0) < W^{GSB}(0) < W^{UB}$.

Comparative Statics wrt \overline{u}



We calculate, for different values of u

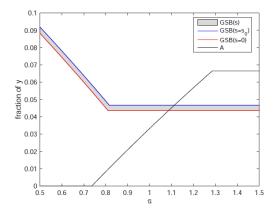
, the fraction of endowment y a consumer would pay to become a depositor at the UB.

• The parameters:
$$\beta = 0.6$$
, $q = 0.5$, $y = 1.1$, $R_A = 1.5$, $R_B = 1.3$, $u(c) = \frac{(c+1)^{1-\theta}-1}{1-\theta}$, where $\theta = 2$.

• We calculate that $\overline{u}_0 = 0.4698$. We vary \overline{u} from 0.5 to 1.5.

- UB is non-redundant $(W^{UB} > W^A)$ if and only if $\overline{u} > \overline{u}_1 = 0.7366$.
- $W^{GSB}(0) > W_0^A$ if and only if $\overline{u} > \overline{u}_2 = 1.0862$.
- $W^{GSB}(s_0) > W_0^A$ if and only if $\overline{u} > \overline{u}_3 = 1.1127$.
- $W_1^A > W_0^A$ if and only if $\overline{u} > \overline{u}_4 = 1.2857$.

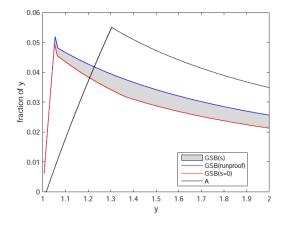
Numerical Example 1: Willingness to pay to move to UB



Numerical Example 2

- We plot the fraction of endowment that a consumers would pay to become a depositor of the UB.
- We fix β = 0.5. Other parameters are the same as the previous example.
- We vary y from 1 to 2. It can be verified that, for y in this range, the consumer will take advantage of the consumption opportunity if he is able to do so.

Numerical Example 2: Willingness to pay to move to UB



Numerical Example 3

- We plot the fraction of endowment that a consumers would pay to become a depositor in the UB.
- We fix $R_B = 1.3$. We vary Δ from 0.03 to 1.3.
- Other parameters remain the same as the previous example.

Numerical Example 3: Willingness to pay to move to UB

