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On sunspots, bank runs, and Glass–Steagall

Karl Shell∗ and Yu Zhang†

We analyze the pre-deposit game in a two-depositor banking model. The Glass–Steagall bank
is assumed to be restricted to holding only liquid assets. Depositors tolerate a panic-based run
if its probability of occurrence s is small. How s affects the allocation of assets depends on the
incentive compatibility constraint (ICC). When the ICC is not binding, the sunspot allocation
is not a mere randomization over the run and non-run outcomes under the so-called “optimal
contract.” We offer this paper as a contribution to both the literature on banking and financial
fragility and also the broader literature on sunspot equilibrium.
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1 Introduction

We analyze a banking model based on Peck and Shell (2010). As in Wallace (1996), there are two
investment assets: one liquid and the other illiquid. Two financial systems are compared. In the
separated financial system there are two separate institutions. One holds only the liquid asset. This
might be thought of as a Glass–Steagall bank (GSB), or a narrow bank. The other financial institution
holds only the illiquid asset. It is like a stock brokerage or mutual fund. In the unified financial system,
or consolidated system, one institution holds the two assets. This might be thought of as a merchant
bank, or merely a post-Glass–Steagall, pre-Dodd–Frank, modern bank.

As in Peck and Shell (2010), we introduce intrinsic aggregate uncertainty by assuming that the
realized fraction of impatient consumers is itself stochastic. Peck and Shell (2010) assume that there
is a continuum of consumers. We assume that there are only a finite number of consumers.

In the post-deposit game, the unified financial system is immune from sunspot-driven runs, but
for some parameters the unified system runs out of cash when the realized fraction of impatient
consumers is high. The GSB is always susceptible to a sunspot-driven run. The run probability s is an
exogenous parameter summarizing the “mood” of the financial sector. If the contract permits a run,
then the probability of the run is s. Of course, if the contract does not permit a run, the probability of
a run is 0. How does the run probability s affect the optimal contract? For small s, runs are tolerated.
In some cases, the contract becomes (as one would expect) strictly more conservative as s increases.
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In other cases, the contract is locally constant in s. In the first cases (the intuitive ones) the incentive
constraint is not binding. In the second cases the incentive constraint is binding.

Our paper is a contribution to the banking and related finance literatures. It is also a con-
tribution to the general sunspots literature, making it appropriate for inclusion in an issue of the
International Journal of Economic Theory in honor of Roger Farmer. In the present model, the sunspot
equilibrium allocation is sometimes a mere randomization over the allocations from the post-
deposit game. Otherwise it is an entirely different animal. This second is like the sunspot equilibria
that are not mere randomizations over the competitive equilibria from the corresponding certainty
economy.

2 The model

2.1 Preferences and technologies

As in Shell and Zhang (2018), there are two consumers and three periods: 0, 1 and 2. In period 0, each
consumer is endowed with y units of the consumption good. There are no endowments in periods
1 and 2. In period 1, either (1) one consumer becomes patient and the other becomes impatient, or
(2) both consumer are patient. The probabilities of the two cases are q and 1 − q, respectively. Thus,
the aggregate number of patient depositors is stochastic.1

Following Peck and Shell (2010), an impatient consumer has an “indivisible” consumption
opportunity2 in period 1, yielding incremental utility of u for one unit of consumption in period
1.3 If the consumption opportunity goes unfulfilled in period 1, these consumers face a discounted
consumption opportunity in period 2, yielding incremental utility of βu for one unit of consumption
in period 2, where the scalar β is less than unity. For a patient consumer, the indivisible consumption
opportunity arrives in period 2. Beyond these urgent consumption opportunities, both types of
consumers derive utility from left-over consumption in period 2 with the strictly concave utility u()
for the left-over balances. Thus, impatient and patient consumers, respectively, have the reduced-
form utility functions

UI(C1
I , C

2
I ) =

{
u + u(C1

I + C2
I − 1), if C1

I ≥ 1,

βu + u(C1
I + C2

I − 1), if C1
I < 1,

(1)

and

UP (C1
P, C2

P ) = u + u(C1
P + C2

P − 1), (2)

where Ct
j ≥ 0 is the total withdrawal of a type-j depositor from the bank in period t. I stands for

impatient depositor and P stands for patient depositor.
There are two constant-returns-to-scale technologies: an illiquid, higher-yield technology A,

and a liquid, lower-yield technology B. For the illiquid technology, investing one unit of period-0

1 As in Peck and Shell (2010), nature first determines how many consumers are patient in the economy. Conditional on
there being a patient consumer, the probability of each consumer being patient is 1

2 . The ex ante probability that a given
consumer becomes impatient is q

2 .
2 This “indivisibility” is meant to capture the idea that if payment is not made at par the purchase is lost (see Peck and Shell

2010).
3 Our notation is mostly, but not entirely, from Peck and Shell (2010).
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consumption yields RA units of consumption if harvested in period 2 and nothing if harvested in
period 1. For the liquid technology, investing one unit of period-0 consumption yields RB units of
consumption if harvested in period 2 and one unit of consumption if harvested in period 1. We
assume that 1 < RB < RA holds. We also assume that individuals do not have direct access to the
two productive technologies.4 Individuals can costlessly store the consumption good.

2.2 The space of deposit contracts

In period 0, the bank designs the demand-deposit contract. Following the bank runs literature,
we assume that the competitive bank maximizes the ex ante expected utilities of depositors. At the
beginning of period 1, each depositor learns his type and observes a sunspot variable δ distributed
uniformly on [0, 1]. Then, the depositors decide whether to arrive at the bank in period 1 or in
period 2. Depositors who choose period 1 arrive in random order.

Let γ denote the fraction of a depositor’s endowment invested in technology B. The aggregate
resources available in period 1 devoted to investment in the liquid asset are thus 2yγ . Sequential
service constraints are part of the physical environment (see Wallace 1988). Let c1(z) be the with-
drawal in period 1 for a depositor with position z in the queue, where z ∈ {1, 2}. Given the indivisible
consumption opportunity, we know that in the optimal contract, c1(z) will take either the value of
1 or 0. Furthermore, as in Peck and Shell (2010), we restrict attention to environments in which it is
beneficial to provide for consumption opportunities whenever the resources are available.5

c1(z) =
{

1, if 2yγ ≥ z,

0, otherwise.
(3)

Let α denote the number of depositors who have made a withdrawal in period 1. We have

α ∈ {0, 1, 2} and α ≤ 2yγ.

In period 2, the bank chooses how to divide its remaining resources from technology B between those
who have withdrawn in period 1 and those who have not as functions of α, denoted respectively by
c2
I (α) and c2

P (α).6 For the deposit contract to be feasible, all remaining resources must be distributed
in period 2. The resource constraint (RC) is given by

αc2
I (α) + (2 − α)c2

P (α) =
[

2yγ −
α∑

z=1

c1(z)

]
RB. (4)

The space of deposit contracts, or mechanisms, for the unified financial system, MU , is given by

MU = {γ, c2
I (α), c2

P (α)
∣∣ Equation (4) holds }.

4 Allowing such direct access opens the possibility of disintermediation, in which direct investment is superior to depositing
in the GSB bank. We plan to investigate disintermediation in future research.

5 That is, we assume u is sufficiently large.
6 That is, as in Peck and Shell (2010), a consumer who receives c2

I (α) from the liquid asset investment receives a total
withdrawal in period 2 of C2

I (α) = c2
I (α) + (1 − γ)RAy. Similarly, a consumer who receives c2

p(α) from the liquid asset

investment receives a total withdrawal in period 2 of C2
P (α) = c2

P (α) + (1 − γ)RAy. As in Peck and Shell (2010), it is
assumed that parameters are such that the inequalities C2

I (α) ≥ 0 and C2
P (α) ≥ 0 never bind.
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The unified bank can access the illiquid asset in period 2, and therefore, c2
I (α) and c2

P (α) can be
negative. For the separated financial system, neither c2

I (α) nor c2
P (α) can be negative since the GSB

does not have access to the illiquid asset. The space of deposit contracts or mechanisms for the
separated financial system, MS , is given by

MS = {γ, c2
I (α) ≥ 0, c2

P (α) ≥ 0
∣∣ Equation (4) holds }.

It follows that c2
I (0) is not relevant. When α = 0, no one has withdrawn in period 1. Similarly,

c2
P (2) is not relevant. Therefore, both c2

P (0) and c2
I (2) can be solved directly from the resource

constraint as a function of γ. What we are left to determine in the space of deposit contracts is {γ,
c2
I (1), c2

P (1)}. We will show later that c2
I (1) and c2

P (1) will be determined by smoothing of left-over
consumption and the incentive compatibility constraint (ICC). The contract is characterized by the
fraction γ .

3 The post-deposit game

A non-run equilibrium in the post-deposit game is a Bayes–Nash equilibrium (BNE) in which only
impatient depositors arrive and withdraw in period 1. The ex-ante welfare at the non-run equilib-
rium, Wnon-run, depends on the total liquidity available to the bank in period 1, namely 2yγ. For
γ ∈ [0, 1

2y
), no depositor can withdraw in period 1. Therefore, we have

Wnon-run = q{u + βu + 2u[(1 − γ)yRA + γyRB − 1]}
+(1 − q){2u + 2u[(1 − γ)yRA + γyRB − 1]}. (5)

In this case, even though a depositor becomes impatient, he has to defer his indivisible consumption
opportunity. For γ ∈ [ 1

2y
, 1] , the impatient depositor (if he exists) does not have to wait for the next

period. Therefore, we have

Wnon-run = q{2u + u[(1 − γ)yRA + c2
I (1)] + u[(1 − γ)yRA + c2

P (1) − 1]}
+(1 − q){2u + 2u[(1 − γ)yRA + γyRB − 1]}. (6)

Since depositors’ types are private information, non-run equilibrium requires that the ICC holds.
That is, a patient depositor weakly prefers period-2 arrival to period-1 arrival, when he assumes
that the other patient depositor chooses period-2 arrival. Since a patient depositor’s consumption
opportunity is in period 2 and consumption can be costlessly stored, his comparison between arrivals
in the two periods only depends on the left-over consumption. For γ ∈ [0, 1

2y
), no one can withdraw

in period 1, and therefore the ICC is irrelevant. For γ ∈ [ 1
2y

, 1], at most one depositor can withdraw
in period 1, and the ICC is given by

q/2

q/2 + (1 − q)
u[(1 − γ)yRA + c2

P (1) − 1] + (1 − q)

q/2 + (1 − q)
u[(1 − γ)yRA + c2

P (0) − 1]

≥ q/2

q/2 + (1 − q)

{
1

2
u[(1 − γ)yRA + c2

I (1)] + 1

2
u[(1 − γ)yRA + c2

P (1) − 1]

}
+ (1 − q)

q/2 + (1 − q)
u[(1 − γ)yRA + c2

I (1)]. (7)
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The left- and right-hand sides of Inequality (7) are a patient depositor’s expected utilities from the
left-over consumption if he arrives in period 2 and 1 respectively, when he assumes that the other
patient depositor chooses period-2 arrival. If a patient depositor is second in the queue, he knows
that there will be no withdrawals in period 1 after him, and therefore he does not withdraw in period
1.7 Other parts of the ICC are verified in like manner.

3.1 The unified financial system

The non-run optimal contract (NROC) for the unified bank is a contract belonging to MU which
maximizes Wnon-run subject to the ICC. Several observations follow. First, the ICC never binds in
the unified system. For γ ∈ [0, 1

2y
), the ICC is not relevant. For γ ∈ [ 1

2y
, 1], the incentive to smooth

left-over consumption across depositors and the RC imply that

c2
I (1) = c2

P (1) − 1 = γyRB − RB + 1

2
.

From the RC, we also have

c2
P (0) − 1 = γyRB − 1.

Hence the ICC does not bind for γ ∈ [ 1
2y

, 1]. Furthermore, since the ICC does not bind and complete
consumption smoothing is available, the incentive to economize on the liquid asset is the only concern
when choosing γ in both [0, 1

2y
) and [ 1

2y
, 1]. Therefore, to find the NROC for the unified system,

we merely need to compare the values of Wnon-run when γ = 0 versus when γ = 1
2y

.

Proposition 1 If u is larger than the threshold u0, the unified bank never runs out of liquidity in period
1 (i.e. γ = 1

2y
). Otherwise, the unified bank holds only the illiquid asset (i.e. γ = 0). The threshold u0

is equal to

u(yRA − 1) − qu(yRA − RA+1
2 ) − (1 − q)u(yRA − RA−RB

2 − 1)
q
2 (1 − β)

All proofs are in the Appendix.
In Peck and Shell (2010), the unified system always runs out of cash when the realized fraction

of impatient consumers is high. This difference is due to the fact that in Peck and Shell (2010) there
is a continuum of depositors and the fraction of impatient depositors, α, is continuously distributed
with support [0, α]. Therefore, the probability of running out of liquidity increases continuously as
the liquidity is lowered below α. Hence if liquidity is smaller than but sufficiently close to α, the
expected cost of running out of liquidity diminishes while the benefit due to higher return from
the illiquid asset does not. However, for a model like ours with a finite number of depositors, that
probability increases abruptly, from 0 to q, as γ is lowered below 1

2y
. Therefore, the expected cost

of running out of liquidity cannot be made arbitrarily small and is fixed at q(1 − β)u, which is the
expected utility loss due to the postponement of the consumption opportunity by the impatient

7 As in Peck and Shell (2010), we assume that when making the withdrawal decision, a depositor in the queue knows what
the guy ahead of him in line has done, and a depositor who does not withdraw in period 1 can withdraw in period 2
without prejudice. This assumption ensures that for no parameter values will there be strategic substitutability. Compare
this with Shell and Zhang (2018), in which there is strategic substitutability for some parameter values.
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depositor. Hence, depending on the parameters, the NROC might entail that the unified bank never
runs out of liquidity. In fact, this is the case when u > u0 . If the consumption opportunity is more
important (i.e. larger u), or the discounting factor is smaller (i.e. smaller β), or it is more likely to
have an impatient depositor (i.e. q is higher), the expected cost of running out of liquidity is larger.
That is why the threshold level u0 is negatively related to (1 − β) and q.

If u ≤ u0, the bank is redundant since in autarky the depositors can do equally well by holding
only the illiquid asset. Hence for the remainder of the analysis, we focus on the case in which u is
sufficiently large such that we only need to consider γ ∈ [ 1

2y
, 1].

A run equilibrium in the post-deposit game is defined as a BNE in which both depositors,
regardless of types, arrive in period 1. A run equilibrium exists if and only if a patient depositor
strictly prefers arriving in period 1. That is,

1

2
u[(1 − γ)yRA + c2

I (1)] + 1

2
u[(1 − γ)yRA + c2

P (1) − 1]

> u[(1 − γ)yRA + c2
P (1) − 1]. (8)

As with the ICC, Inequality (8) only involves utilities from left-over consumption. The left-hand
side (and right-hand side) of Inequality (8) is a patient depositor’s expected utility from left-over
consumption if he arrives in period 1 (and period 2), while assuming the other patient depositor (if
he exists) chooses period-1 arrival. Obviously, Inequality (8) can be reduced to

c2
I (1) > c2

P (1) − 1. (9)

Since the NROC entails complete left-over consumption smoothing, c2
I (1) = c2

P (1) − 1, the unified
banking system is immune to panic-based runs.

3.2 The separated financial system

The NROC for the separated banking system is a contract belonging to MS which maximizes Wnon-run

subject to the ICC. Unlike the unified system, we must have non-negative c2
I (1) in the separated system

since the GSB does not have access to the illiquid asset. Therefore, the incentive to smooth left-over
consumption across depositors is restricted by the non-negativity constraint if the bank does not
have sufficient liquidity. To be specific, for γ ∈ [ 1

2y
, 1

2y
+ 1

2yRB
], the non-negativity constraint binds

and

c2
P (1) − 1 < c2

I (1) = 0.

For γ ∈ ( 1
2y

+ 1
2yRB

, 1], the non-negativity constraint does not bind so there is complete consump-
tion smoothing. Combining this with the resource constraint, we have

c2
I (1) = max

{
0, γyRB − RB + 1

2

}
and

c2
P (1) − 1 = min

{
(2γy − 1)RB − 1, γyRB − RB + 1

2

}
.

If the bank has sufficient liquidity so that left-over consumption is completely smoothed across
depositors, the ICC does not bind (as in the unified system). Furthermore, from condition (8), we
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know that the non-run equilibrium is the unique equilibrium. However, if the GSB does not have
sufficient liquidity, the ICC might bind depending on the parameters. Furthermore, from condition
(8), we know that a run equilibrium also exists. To summarize, we have the following lemma.

Lemma 1 If the GSB has sufficient liquidity (i.e. γ ≥ 1
2y

+ 1
2yRB

), the ICC does not bind and non-run
is the unique equilibrium in the post-deposit game. Otherwise, the ICC might bind depending on the
parameters and we also have a run equilibrium in the post-deposit game.

Let γrun-proof denote the value of 1
2y

+ 1
2yRB

. From Lemma 1 we know that a run equilibrium

exists if and only if γ < γrun-proof. The next proposition shows that the NROC in the separated system
also has a run equilibrium. This result is the same as the result in Peck and Shell (2010), where there
is a continuum of depositors.

Proposition 2 Let γ̂ denote the fraction of the liquid asset investment specified by the NROC. We have
γ̂ < γrun−proof .

The NROC only considers the non-run equilibrium, so the benefit from eliminating runs is not
included in this calculation. Therefore, the only benefit of increasing γ to γrun-proof is smoothing of
left-over consumption when there is an impatient depositor. The cost of doing this is the lower return
compared to the illiquid asset. But when γ is sufficiently close to γrun-proof, left-over consumption is
sufficiently close to complete smoothing. So the benefit of raising γ diminishes while the cost does
not.

4 The pre-deposit game

Since the NROC in the unified system is immune to runs, the optimal contract in the pre-deposit
game is the same as the NROC from the post-deposit game. So in this section, we only analyze
the pre-deposit game for the separated system. In Section 3, we showed that in the post-deposit
game of the separated system, we have both a non-run equilibrium and a run equilibrium for any
γ ∈ [ 1

2y
, γrun-proof). For any γ ∈ [γrun-proof, 1], we have a unique non-run equilibrium. We assume

that bank runs are sunspot-driven and the run probability is s. Hence whether a run equilibrium
exists in the pre-deposit game depends on whether the optimal contract for the pre-deposit game,
denoted by γ∗(s), belongs to the set [ 1

2y
, γrun-proof).

Denote the ex ante welfare by W(γ ; s). We have

W(γ ; s) =
{

sW run(γ) + (1 − s)Wnon-run(γ), if γ ∈ [ 1
2y

, γrun-proof],

Wnon-run(γ), if γ ∈ [γrun-proof, 1],
(10)

where

W run(γ) = q

(
u + βu

2
+ 2u

2

)
+ (1 − q)(2u)

+ u[(1 − γ)yRA + c2
I (1)] + u[(1 − γ)yRA + c2

P (1) − 1]. (11)

The ex ante welfare in the run equilibrium is denoted by W run. In the run equilibrium, both depos-
itors, regardless of their types, arrive in period 1 and a patient depositor chooses to withdraw if and
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only if he is the first in the queue. If there is one impatient depositor, the probability of the patient
depositor being the first in the queue is 1

2 and, in this case, there is misallocation of liquidity since
the impatient depositor is unable to make his withdrawal. However, if the patient depositor is second
in the queue or both depositors are patient, there is no misallocation of liquidity even in the run
equilibrium.

As we show in Section 3, depending on the parameters, the ICC might bind for γ ∈
[ 1

2y
, γrun-proof]. To analyze the ICC, let D(γ) denote the difference between the left-hand side and

the right-hand side of Inequality (7). Let � denote the difference between asset returns, that is,

� = RA − RB > 0.

The next lemma shows that, if the difference in asset returns is small, a patient depositor’s incentive
to arrive in period 2 strictly increases with the liquid asset investment.

Lemma 2 If � < RB, D(γ) is strictly increasing in γ.

For any γ ∈ [ 1
2y

, γrun-proof], complete smoothing of left-over liquidity is restricted by the non-
negativity constraint. Hence, if a depositor withdraws in period 1, the remaining depositor receives
in period 2 all the liquid asset left in the GSB including its return, namely (2γy − 1)RB. Therefore,
with more liquidity, a patient depositor can receive more from the GSB in period 2. However, it
is costly to have more liquidity since the remaining depositor’s total left-over consumption also
includes the illiquid asset and its return, (1 − γ)yRA. Hence, if the difference in the asset returns is
small (i.e. � < RB), a patient depositor’s incentive to arrive in period 2 strictly increases with the
bank liquidity.

The condition � < RB is equivalent to RA < 2RB, which seems to be a reasonable assumption.
We focus on the case of RB < RA < 2RB in the analysis of the optimal contract. We characterize the
ICC as a constraint on γ in the following lemma.

Lemma 3 If � < RB, the ICC is equivalent to γ ≥ γIC. If D( 1
2y

) ≥ 0, we have γIC = 1
2y

. If D( 1
2y

) <

0, we have γIC equal to the level of γ such that D(γ) = 0.

From the above analysis, we know that γ∗(s) is the level of γ ∈ [γIC, 1] which maximizes W(γ ; s).
For any γ ∈ [γrun-proof, 1], run equilibria can be eliminated and complete consumption smoothing is
provided. The best γ is γrun-proof. Therefore, we only have to compare γrun-proof with the best γ in the
range of [γIC, γrun-proof) to find γ∗(s). Due to the postponement of the consumption opportunity
by the impatient depositor, the expected utility in the run equilibrium is always smaller than the
expected utility with γ = γrun-proof. Therefore, the optimal contract tolerates runs if and only if s is
sufficiently small.

Proposition 3 The optimal contract tolerates runs if and only if the run probability is smaller than a
threshold s0. If the run probability is larger than that threshold, the optimal contract is run-proof (i.e.
γ = γrun−proof ).

Now let us analyze how the optimal contract responds as the run probability increases from 0 to
a sufficiently small value such that it is still optimal to tolerate the runs.
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Proposition 4 If the ICC constraint does not bind at the NROC, then γ∗(s) strictly increases with s

when s is sufficiently small. If the ICC binds at the NROC, we have γ∗(s) = γIC when s is sufficiently
small.

Three numerical examples follow. In the first example, banks are redundant.

Example 1 Let u = 3, β = 0.5, q = 0.5, y = 1.1, RA = 1.5, RB = 1.3, u(c) = c1−θ−1
1−θ

, where
θ = 2. For the unified system, we have Wnon-run = 4.173077 when γ = 0 and Wnon-run = 3.681818
when γ = 1

2y
= 0.454545. Therefore γ = 0 for the NROC.

In the next example, the ICC does not bind for the GSB; for small s, γ∗(s) is strictly increasing.
Example 2 The parameters are the same as Example 1, except that u = 10. For the unified system,

we have Wnon-run = 16.423077 when γ = 0 and Wnon-run = 17.681818 when γ = 1
2y

= 0.454545.

Therefore γ = 1
2y

= 0.454545 for the NROC. For the GSB, we have γIC = 0.750154 and γrun-proof =
0.804196. If s > s0 = 0.017708, the optimal contract is run-proof (i.e. γ∗(s) = γrun-proof). If s < s0,
the optimal contract tolerates runs and γ∗(s) is strictly increasing in s. If s = s0, the run-tolerating
contract and the run-proof contract would deliver the same ex ante welfare. In Figure 1, we plot
γ∗(s). The jump of γ to γrun-proof at s = s0 dwarfs the increase in γ∗(s) below s0. To show more
clearly that γ∗(s) does strictly increase in s when s < s0, the plot is separated into two panels.

In the next example, γ∗(s) is a step function.
Example 3 The parameters are the same as in Example 2 except that θ = 0.9. For the unified

system, we have Wnon-run = 16.656728 when γ = 0 and Wnon-run = 18.544118 when γ = 1
2y

=
0.454545. Therefore γ = 1

2y
= 0.454545 for the NROC. For the GSB, the ICC binds and we have

γIC = γ̂ = 0.741409. Since γrun-proof only depends on y and RB, we have the same γrun-proof as

Figure 1 γ∗(s) for Example 2
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Figure 2 γ∗(s) for Example 3

in Example 2. If s > s0 = 0.021389, the optimal contract is run-proof (i.e. γ∗(s) = γrun-proof). If
s < s0, the optimal contract tolerates runs and is locally constant (γ∗(s) = γIC). In Figure 2, we plot
the step function γ∗(s).

5 Summary and concluding remarks

In the separated financial system, the GSB has access only to the liquid asset. Therefore, to eliminate
runs the GSB would be more liquid than is optimal. Liquidity is costly to the depositor (and the
economy) because of the difference in the returns on the two assets. The cost of a run-proof contact
cannot be justified unless the run probability is sufficiently high. On the other hand, there is no
portfolio restriction for the consolidated bank. It is able to use the illiquid asset to provide incentive
for the patient depositor to wait. It is immune to panic-based runs.

We have focused on the GSB where sunspot-driven runs can occur. The optimal banking contract
is completely determined by γ∗(s), the fraction of resources deposited in the GSB as a function of
the exogenous run probability s. For small s, consumers tolerate runs. How does γ∗(s) vary with
small changes in s? In some cases, γ∗(s) is invariant to small changes in s. In these cases, the ICC is
binding. Other cases are more intuitive: the fraction γ∗(s) increases with small increases in s. That
is, depositors respond to increased risk by choosing to be more conservative (i.e. to be more liquid).
In these intuitive cases, the ICC is not binding.

If the ICC does not bind, then for small, positive s the sunspot allocation in the pre-deposit
game is not a mere randomization over outcomes from the post-deposit game. This places this
result in the general sunspot equilibrium literature, from which we know that sunspot equilibria
are sometimes mere randomizations over equilibria from the corresponding certainty economy; the
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GSB with binding ICC is analogous. Other times, sunspot equilibria are not randomizations over
the corresponding certainty equilibria. Indeed, they are entirely different animals; the GSB with
non-binding ICC is like one of these different sunspot animals.8

Appendix: Proofs
Proof of Proposition 1

For γ = 0,

Wnon-run = q(u + βu) + (1 − q)(2u) + 2u[yRA − 1].

For γ = 1
2y

,

Wnon-run = 2u + q2u

(
yRA − RA + 1

2

)
+ (1 − q)2u

(
yRA − RA − RB

2
− 1

)
.

Therefore, if u > u0, the NROC implies that γ = 1
2y

. If u ≤ u0, the NROC implies that γ = 0.

Proof of Proposition 2

It can be shown that(
∂Wnon-run

∂γ

)
γ=γrun-proof

= −2yqu′
[
yRA − RA

2
− RA

2RB

]
(RA − RB)

−2y(1 − q)u′
[
yRA − RA

2
− RA

2RB

+ RB − 1

2

]
(RA − RB)

< 0.

Hence we have γ̂ < γrun-proof.

Proof of Lemma 2

It can be shown that

D′(γ) = y
{

(1−3q/4)
q/2+(1−q)u

′[(1 − γ)yRA]RA

+ q/4
q/2+(1−q)u

′[(1 − γ)yRA + (2γy − 1)RB − 1](2RB − RA)

− (1−q)
q/2+(1−q)u

′[(1 − γ)yRA + γyRB − 1](RA − RB)
}

.

Therefore, if � < RB, we have (2RB − RA) > 0. Since

u′[(1 − γ)yRA] > u′[(1 − γ)yRA + γyRB − 1]

8 See Shell (2008). The original sunspots paper (Shell 1977) was set in a dynamic overlapping-generations dynamic model.
The International Journal of Economic Theory has provided an excellent home for work on economic dynamics, including
sunspot dynamics. See, for example, Dufourt et al. (2016).
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for any γ ∈ [ 1
2y

, γrun-proof], we have D′(γ) > 0.

Proof of Lemma 3

If D( 1
2y

) ≥ 0, we have D(γ) > 0 for any γ ∈ [ 1
2y

, γrun-proof] since D(γ) is strictly increasing.

Since D(γrun-proof) is always positive, if D( 1
2y

) < 0 there must be a unique level of γ ∈ [ 1
2y

, γrun-proof]

such that D(γ) = 0. Therefore, the ICC is equivalent to γ ≥ γIC.

Proof of Proposition 4

If the ICC does not bind at NROC, we have ( ∂Wnon-run

∂γ
)γ=γIC ≥ 0. Then we have ( ∂W run

∂γ
)γ=γIC > 0.

This is because

∂Wnon-run

∂γ
= −yqu′[(1 − γ)yRA]RA

+yqu′[(1 − γ)yRA + (2γy − 1)RB − 1](2RB − RA)

−2y(1 − q)u′[(1 − γ)yRA + γyRB − 1](RA − RB)

and

∂W run

∂γ
= −yu′[(1 − γ)yRA]RA

+yu′[(1 − γ)yRA + (2γy − 1)RB − 1](2RB − RA).

We see that if ∂Wnon-run

∂γ
≥ 0, we have ∂W run

∂γ
> ∂Wnon-run

∂γ
> 0 and therefore

(
∂W(γ ; s)

∂γ

)
γ=γ∗(s)

= s

(
∂W run

∂γ

)
γ=γ∗(s)

+ (1 − s)

(
∂Wnon-run

∂γ

)
γ=γ∗(s)

= 0

for s sufficiently small. According to the implicit function theorem, we have

∂γ∗(s)

∂s
=

⎡⎣ ∂Wnon-run

∂γ
− ∂W run

∂γ

s ∂2W run

∂γ2 + (1 − s) ∂2Wnon-run

∂γ2

⎤⎦
γ=γ∗(s)

> 0.

If the ICC does not bind at the NROC, we have ( ∂Wnon-run

∂γ
)γ=γIC < 0. Then for s sufficiently small,

(
∂W(γ ; s)

∂γ

)
γ=γIC

= s

(
∂W run

∂γ

)
γ=γIC

+ (1 − s)

(
∂Wnon-run

∂γ

)
γ=γIC

< 0.

Therefore, γ∗(s) = γIC for s is small.
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