36th Anniversary of the Classic Diamond-Dybvig JPE paper

DD Revolution in Finance:

- ▶ intermediation
- bank runs on depository institutions
- fragility of other financial institutions

Extensions to Macro, etc.

- beliefs about beliefs of others
- asymmetric information
- ► contracts, mechanisms
- fragility
- ► GE without Walras

DD Revolution: Best Contract versus Best Run-Proof Contract*

Karl Shell Yu Zhang
Cornell University Xiamen University

Slides for DD 36 Conference
Friday, March 29, 2019
Olin Business School
Washington University in St. Louis

*Extract from the draft: "The Diamond-Dybvig Revolution: Extensions Based on the Original DD Environment" by Shell and Zhang

Risk tolerance

- street crossing
- bridge building
- engineers versus economists
- ▶ insurance deductibles

- ▶ For the individuals for whom contract is designed
 - less risk is not always better
 - zero risk, even if feasible, is not always best
- For society
 - above 2 bullets apply
 - but if private banks are too risky because of externalities, we still need to model individual bank and depositor behavior.
 - Friedman, Kotlikoff

Extend the basic DD (JPE) environment

- continuum of consumers (potential depositors)
- Only feasible contract is the simple deposit contract. Partial suspension of convertibility is not allowed. In a break from DD, there is no deposit insurance.
- no aggregate uncertainty.
- expected utility maximization as consequence of free-entry banking
- generalize depositor beliefs
- REE

Why allow for bank runs?

- consumers might tolerate risk
- especially so for non-bank applications
- if this risk is not socially desirable, we need to test risk-reducing social actions based on a model of risky private behavior
- runs are historical facts

- Large, excellent literature on run-proof mechanisms, e.g.
 - DD
 - Wallace
 - ▶ Green-Lin
- ► Peck-Shell (JPE)
 - $\ensuremath{\star}$ pre-deposit game, in which individuals choose whether or not to deposit
 - tests whether run-proof mechanisms generalize. See also Ennis-Keister

Post-deposit game

- game-theory style reasoning
 - ▶ analyze **post** before **pre**
 - include off-equilibrium behavior
- Using DD notation.
 - c is withdrawal in period 1.
 - small c is conservative, large c is aggressive.
 - $ightharpoonup c^{run-proof} = 1.$
 - $c^{IC} = \frac{R}{(1-\lambda)+\lambda R}.$

Post-Deposit Game

Pre-deposit game

- The pre-deposit game is a game between the bank and the consumers (while the post-deposit game is game among depositors)
- Consumers
 - coordinate on the same sunspot signal. Contrast with Gu.
 - beliefs dependent on contract c:

$$s(c) = \begin{cases} 0, & \text{if } c \in [0, c^{run} - proof] \\ \widehat{s}(c), & \text{if } c \in (c^{run} - proof, c^{IC}] \\ 1, & \text{if } c \in (c^{IC}, 1/\lambda]. \end{cases}$$

generalization of 1-step consumer beliefs in Peck-Shell in the spirit of Ennis-Keister

Pre-deposit game

- Bank
 - chooses c(s) to max EU given consumer beliefs, s(c)

Equilibrium

- Following Ennis-Keister
 - ▶ REE is the fixed point of the pair (s(c), c(s)), where s(c) is the depositor run probability function and c(s) is the bank's EU-maximizing contract.
- ▶ Let s₀(c) be the maximum value of s beyond which it is no longer optimal for the bank to tolerate runs under contract c.
- Define $\overline{s_0}$ by $\overline{s_0} = \max_c (s_0(c))$.

1-step beliefs (Peck-Shell):

- ▶ $\hat{s}(c) = s_1 \in (0, 1)$
- ▶ low interaction assumption

Proposition (1-step):

- ▶ If $s_1 \in (0, \overline{s_0})$, unique REE is $(s_1, c(s_1))$.
 - s₁ is an equilibrium belief.
- ▶ If $s_1 > \overline{s_0}$, the unique REE is $(0, c^{run-proof})$.
 - s₁ is an off-equilibrium belief.
- ▶ If $s_1 = \overline{s_0}$, there are 2 equilibria: $(\overline{s_0}, c(\overline{s_0}))$ and $(0, c^{run-proof})$.

Example (1-step)

- ▶ $u(c) = \frac{(c+1)^{1-\theta}}{1-\theta} + 1$, where $\theta = 3$. R = 2, $\lambda = 0.3$. $c^{run} \frac{proof}{1} = 1$, $c^{IC} = 1.538$ and $c^{UE} = 1.227$. We have $\overline{s_0} = 0.0177$. We see that s_1 is an off-equilibrium belief if $s_1 \geq 0.0177$.
- If, for example, $s_1 = 0.0089$, then the REE is (0.0089, 1.1982). Then s_1 is an equilibrium belief.

Comparative Statistics (1-step)

- Because the IC does not bind, c is strictly decreasing in s₁.
 Compare with PS and Shell-Zhang, in which the IC binds in some cases, and does not bind in other cases.
- Since the IC does not bind, the SSE in the pre-deposit game is never a mere randomization over the equilibria from the post-deposit game.

Generalizing from 1-step $\hat{s}(c)$ to multiple steps:

where $0 < s_1 < s_2 < 1$.

Example (2-step)

- be a multiple-step function with $s_1=0.0053$, $s_2=0.0107$ and $c^1=1.083$. s_1 and s_2 are equilibrium run beliefs. The corresponding equilibrium contracts are $c^1=1.083$ and $c^2=1.192$.
- ► The two REE are (0.0053, 1.083) and (0.0107, 1.192).
- ► The bank is indifferent between these 2 equilibria. The second one is riskier, but it provides more c to compensate exactly for the extra risk.

- $ightharpoonup \widehat{s}(c)$ is continuous and strictly increasing in c:
 - REE exists
 - if, in addition, $\widehat{s}(c)$ is smooth then REE is unique
 - An example (built from our 2-step example) shows that if $\widehat{s}(c)$ is kinked, then there can be multiple REE even if $\widehat{s}(c)$ is continuous and strictly increasing.